Publication

Exploring Randomly Wired Neural Networks for Image Recognition

International Conference on Computer Vision (ICCV)


Abstract

Neural networks for image recognition have evolved through extensive manual design from simple chain-like models to structures with multiple wiring paths. The success of ResNets [12] and DenseNets [17] is due in large part to their innovative wiring plans. Now, neural architecture search (NAS) studies are exploring the joint optimization of wiring and operation types, however, the space of possible wirings is constrained and still driven by manual design despite being searched. In this paper, we explore a more diverse set of connectivity patterns through the lens of randomly wired neural networks. To do this, we first define the concept of a stochastic network generator that encapsulates the entire network generation process. Encapsulation provides a unified view of NAS and randomly wired networks. Then, we use three classical random graph models to generate randomly wired graphs for networks. The results are surprising: several variants of these random generators yield network instances that have competitive accuracy on the ImageNet benchmark. These results suggest that new efforts focusing on designing better network generators may lead to new breakthroughs by exploring less constrained search spaces with more room for novel design. The code is publicly available online.

Related Publications

All Publications

NeurIPS - December 6, 2021

Parallel Bayesian Optimization of Multiple Noisy Objectives with Expected Hypervolume Improvement

Samuel Daulton, Maximilian Balandat, Eytan Bakshy

BMVC - November 22, 2021

Mitigating Reverse Engineering Attacks on Local Feature Descriptors

Deeksha Dangwal, Vincent T. Lee, Hyo Jin Kim, Tianwei Shen, Meghan Cowan, Rajvi Shah, Caroline Trippel, Brandon Reagen, Timothy Sherwood, Vasileios Balntas, Armin Alaghi, Eddy Ilg

arXiv - January 29, 2020

fastMRI: An Open Dataset and Benchmarks for Accelerated MRI

Jure Zbontar, Florian Knoll, Anuroop Sriram, Tullie Murrell, Zhengnan Huang, Matthew J. Muckley, Aaron Defazio, Ruben Stern, Patricia Johnson, Mary Bruno, Marc Parente, Krzysztof J. Geras, Joe Katsnelson, Hersh Chandarana, Zizhao Zhang, Michal Drozdzal, Adriana Romero, Michael Rabbat, Pascal Vincent, Nafissa Yakubova, James Pinkerton, Duo Wang, Erich Owens, Larry Zitnick, Michael P. Recht, Daniel K. Sodickson, Yvonne W. Lui

arXiv - April 20, 2021

MBRL-Lib: A Modular Library for Model-based Reinforcement Learning

Luis Pineda, Brandon Amos, Amy Zhang, Nathan O. Lambert, Roberto Calandra

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookie Policy