Publication

Engaging Image Captioning via Personality

Conference Computer Vision and Pattern Recognition (CVPR)


Abstract

Standard image captioning tasks such as COCO and Flickr30k are factual, neutral in tone and (to a human) state the obvious (e.g., “a man playing a guitar”). While such tasks are useful to verify that a machine understands the content of an image, they are not engaging to humans as captions. With this in mind we define a new task, PERSONALITY-CAPTIONS, where the goal is to be as engaging to humans as possible by incorporating controllable style and personality traits. We collect and release a large dataset of 241,858 of such captions conditioned over 215 possible traits. We build models that combine existing work from (i) sentence representations [36] with Transformers trained on 1.7 billion dialogue examples; and (ii) image representations [32] with ResNets trained on 3.5 billion social media images. We obtain state-of-the-art performance on Flickr30k and COCO, and strong performance on our new task. Finally, online evaluations validate that our task and models are engaging to humans, with our best model close to human performance.

Related Publications

All Publications

LEEP: A New Measure to Evaluate Transferability of Learned Representations

Cuong V. Nguyen, Tal Hassner, Matthias Seeger, Cedric Archambeau

ICML - July 13, 2020

Growing Action Spaces

Gregory Farquhar, Laura Gustafson, Zeming Lin, Shimon Whiteson, Nicolas Usunier, Gabriel Synnaeve

July 14, 2020

Stochastic Hamiltonian Gradient Methods for Smooth Games

Nicolas Loizou, Hugo Berard, Alexia Jolicoeur-Martineau, Pascal Vincent, Simon Lacoste-Julien, Ioannis Mitliagkas

ICML - July 12, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy