Publication

ELI5: Long Form Question Answering

Association for Computational Linguistics (ACL)


Abstract

We introduce the first large-scale corpus for long-form question answering, a task requiring elaborate and in-depth answers to open-ended questions. The dataset comprises 270K threads from the Reddit forum “Explain Like I’m Five” (ELI5) where an online community provides answers to questions which are comprehensible by five year olds. Compared to existing datasets, ELI5 comprises diverse questions requiring multi-sentence answers. We provide a large set of web documents to help answer the question. Automatic and human evaluations show that an abstractive model trained with a multi-task objective outperforms conventional Seq2Seq, language modeling, as well as a strong extractive baseline. However, our best model is still far from human performance since raters prefer gold responses in over 86% of cases, leaving ample opportunity for future improvement.

Related Publications

All Publications

MICCAI - October 5, 2020

Active MR k-space Sampling with Reinforcement Learning

Luis Pineda, Sumana Basu, Adriana Romero, Roberto Calandra, Michal Drozdzal

Multimodal Video Analysis Workshop at ECCV - August 23, 2020

Audio-Visual Instance Discrimination

Pedro Morgado, Nuno Vasconcelos, Ishan Misra

Interspeech - October 24, 2020

Efficient Wait-k Models for Simultaneous Machine Translation

Maha Elbayad, Laurent Besacier, Jakob Verbeek

ICML - November 3, 2020

Learning Near Optimal Policies with Low Inherent Bellman Error

Andrea Zanette, Alessandro Lazaric, Mykel J. Kochenderfer, Emma Brunskill

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy