Publication

Efficient, arbitrarily high precision hardware logarithmic arithmetic for linear algebra

IEEE Symposium on Computer Arithmetic (ARITH)


Abstract

The logarithmic number system (LNS) is arguably not broadly used due to exponential circuit overheads for summation tables relative to arithmetic precision. Methods to reduce this overhead have been proposed, yet still yield designs with high chip area and power requirements. Use remains limited to lower precision or high multiply/add ratio cases, while much of linear algebra (near 1:1 multiply/add ratio) does not qualify.

We present a dual-base approximate logarithmic arithmetic comparable to floating point in use, yet unlike LNS it is easily fully pipelined, extendable to arbitrary precision with O(n2) overhead, and energy efficient at a 1:1 multiply/add ratio. Compared to float32 or float64 vector inner product with FMA, our design is respectively 2.3× and 4.6× more energy efficient in 7 nm CMOS. It depends on exp and log evaluation 5.4× and 3.2× more energy efficient, at 0.23× and 0.37× the chip area for equivalent accuracy versus standard hyperbolic CORDIC using shift-and-add and approximated ODE integration in the style of Revol and Yakoubsohn. This technique is a novel alternative for low power, high precision hardened linear algebra in computer vision, graphics and machine learning applications.

Related Publications

All Publications

NeurIPS - December 6, 2021

Parallel Bayesian Optimization of Multiple Noisy Objectives with Expected Hypervolume Improvement

Samuel Daulton, Maximilian Balandat, Eytan Bakshy

ASPE - October 8, 2021

Single-Point Diamond Turning of Features with Large Azimuthal Slope

Alex Sohn, Neil Naples

BMVC - November 22, 2021

Mitigating Reverse Engineering Attacks on Local Feature Descriptors

Deeksha Dangwal, Vincent T. Lee, Hyo Jin Kim, Tianwei Shen, Meghan Cowan, Rajvi Shah, Caroline Trippel, Brandon Reagen, Timothy Sherwood, Vasileios Balntas, Armin Alaghi, Eddy Ilg

arXiv - January 29, 2020

fastMRI: An Open Dataset and Benchmarks for Accelerated MRI

Jure Zbontar, Florian Knoll, Anuroop Sriram, Tullie Murrell, Zhengnan Huang, Matthew J. Muckley, Aaron Defazio, Ruben Stern, Patricia Johnson, Mary Bruno, Marc Parente, Krzysztof J. Geras, Joe Katsnelson, Hersh Chandarana, Zizhao Zhang, Michal Drozdzal, Adriana Romero, Michael Rabbat, Pascal Vincent, Nafissa Yakubova, James Pinkerton, Duo Wang, Erich Owens, Larry Zitnick, Michael P. Recht, Daniel K. Sodickson, Yvonne W. Lui

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookie Policy