Publication

Do explanations make VQA models more predictable to a human?

Empirical Methods in Natural Language Processing (EMNLP)


Abstract

A rich line of research attempts to make deep neural networks more transparent by generating human-interpretable ‘explanations’ of their decision process, especially for interactive tasks like Visual Question Answering (VQA). In this work, we analyze if existing explanations indeed make a VQA model – its responses as well as failures – more predictable to a human. Surprisingly, we find that they do not. On the other hand, we find that human-in-the-loop approaches that treat the model as a black-box do.

Related Publications

All Publications

MICCAI - October 5, 2020

Active MR k-space Sampling with Reinforcement Learning

Luis Pineda, Sumana Basu, Adriana Romero, Roberto Calandra, Michal Drozdzal

Multimodal Video Analysis Workshop at ECCV - August 23, 2020

Audio-Visual Instance Discrimination

Pedro Morgado, Nuno Vasconcelos, Ishan Misra

Interspeech - October 24, 2020

Efficient Wait-k Models for Simultaneous Machine Translation

Maha Elbayad, Laurent Besacier, Jakob Verbeek

ICML - November 3, 2020

Learning Near Optimal Policies with Low Inherent Bellman Error

Andrea Zanette, Alessandro Lazaric, Mykel J. Kochenderfer, Emma Brunskill

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy