Publication

Deep Relightable Appearance Models for Animatable Faces

SIGGRAPH


Abstract

We present a method for building high-fidelity animatable 3D face models that can be posed and rendered with novel lighting environments in real-time. Our main insight is that relightable models trained to produce an image lit from a single light direction can generalize to natural illumination conditions but are computationally expensive to render. On the other hand, efficient, high-fidelity face models trained with point-light data do not generalize to novel lighting conditions. We leverage the strengths of each of these two approaches. We first train an expensive but generalizable model on point-light illuminations, and use it to generate a training set of high-quality synthetic face images under natural illumination conditions. We then train an efficient model on this augmented dataset, reducing the generalization ability requirements. As the efficacy of this approach hinges on the quality of the synthetic data we can generate, we present a study of lighting pattern combinations for dynamic captures and evaluate their suitability for learning generalizable relightable models. Towards achieving the best possible quality, we present a novel approach for generating dynamic relightable faces that exceeds state-of-the-art performance. Our method is capable of capturing subtle lighting effects and can even generate compelling near-field relighting despite being trained exclusively with far-field lighting data. Finally, we motivate the utility of our model by animating it with images captured from VR-headset mounted cameras, demonstrating the first system for face-driven interactions in VR that uses a photorealistic relightable face model.

Related Publications

All Publications

CVPR - June 19, 2021

Efficient Object Embedding for Spliced Image Retrieval

Bor-Chun Chen, Zuxuan Wu, Larry S. Davis, Ser-Nam Lim

CVPR - June 19, 2021

On Feature Normalization and Data Augmentation

Boyi Li, Felix Wu, Ser-Nam Lim, Serge Belongie, Kilian Q. Weinberger

CVPR - June 18, 2021

NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go

Marvin Eisenberger, David Novotny, Gael Kerchenbaum, Patrick Labatut, Natalia Neverova, Daniel Cremers, Andrea Vedaldi

CVPR - June 18, 2021

Discovering Relationships between Object Categories via Universal Canonical Maps

Natalia Neverova, Artsiom Sanakoyeu, Patrick Labatut, David Novotny, Andrea Vedaldi

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy