CoPhy: Counterfactual Learning of Physical Dynamics

International Conference on Learning Representations (ICLR)


Understanding causes and effects in mechanical systems is an essential component of reasoning in the physical world. This work poses a new problem of counterfactual learning of object mechanics from visual input. We develop the CoPhy benchmark to assess the capacity of the state-of-the-art models for causal physical reasoning in a synthetic 3D environment and propose a model for learning the physical dynamics in a counterfactual setting. Having observed a mechanical experiment that involves, for example, a falling tower of blocks, a set of bouncing balls or colliding objects, we learn to predict how its outcome is affected by an arbitrary intervention on its initial conditions, such as displacing one of the objects in the scene. The alternative future is predicted given the altered past and a latent representation of the confounders learned by the model in an end-to-end fashion with no supervision of confounders. We compare against feedforward video prediction baselines and show how observing alternative experiences allows the network to capture latent physical properties of the environment, which results in significantly more accurate predictions at the level of super human performance.

Related Publications

All Publications

IEEE TSE - February 17, 2021

Machine Learning Testing: Survey, Landscapes and Horizons

Jie M. Zhang, Mark Harman, Lei Ma, Yang Liu

AISTATS - April 13, 2021

Multi-armed Bandits with Cost Subsidy

Deeksha Sinha, Karthik Abinav Sankararaman, Abbas Kazerouni, Vashist Avadhanula

CVPR - June 19, 2021

SimPoE: Simulated Character Control for 3D Human Pose Estimation

Ye Yuan, Shih-En Wei, Tomas Simon, Kris Kitani, Jason Saragih

ICLR - May 3, 2021

Support-Set Bottlenecks for Video-Text Representation Learning

Mandela Patrick, Po-Yao Huang, Florian Metze, Andrea Vedaldi, Alexander Hauptmann, Yuki M. Asano, João Henriques

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy