Publication

Continuous Deployment of Mobile Software at Facebook (Showcase)

ACM SIGSOFT: International Symposium on the Foundations of Software Engineering (FSE 2016)


Abstract

Continuous deployment is the practice of releasing software updates to production as soon as it is ready, which is receiving increased adoption in industry. The frequency of updates of mobile software has traditionally lagged the state of practice for cloud-based services for a number of reasons. Mobile versions can only be released periodically. Users can choose when and if to upgrade, which means that several different releases coexist in production. There are hundreds of Android hardware variants, which increases the risk of having errors in the software being deployed.

Facebook has made significant progress in increasing the frequency of its mobile deployments. Over a period of 4 years, the Android release has gone from a deployment every 8 weeks to a deployment every week. In this paper, we describe in detail the mobile deployment process at Facebook. We present our findings from an extensive analysis of software engineering metrics based on data collected over a period of 7 years. A key finding is that the frequency of deployment does not directly affect developer productivity or software quality. We argue that this finding is due to the fact that increasing the frequency of continuous deployment forces improved release and deployment automation, which in turn reduces developer workload. Additionally, the data we present shows that dog-fooding and obtaining feedback from alpha and beta customers is critical to maintaining release quality.

Related Publications

All Publications

DELF: Safeguarding deletion correctness in Online Social Networks

Katriel Cohn-Gordon, Georgios Damaskinos, Divino Neto, Joshi Cordova, BenoƮt Reitz, Benjamin Strahs, Daniel Obenshain, Paul Pearce, Ioannis Papagiannis

USENIX Security - August 11, 2020

Eliminating Bugs with Dependent Haskell (Experience Report)

Noam Zilberstein

Haskell Symposium - August 27, 2020

MLPerf Inference Benchmark

Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark Charlebois, William Chou, Ramesh Chukka, Cody Coleman, Sam Davis, Pan Deng, Greg Diamos, Jared Duke, Dave Fick, J. Scott Gardner, Itay Hubara, Sachin Idgunji, Thomas B. Jablin, Jeff Jiao, Tom St. John, Pankaj Kanwar, David Lee, Jeffery Liao, Anton Lokhmotov, Francisco Massa, Peng Meng, Paulius Micikevicius, Colin Osborne, Gennady Pekhimenko, Arun Tejusve Raghunath Rajan, Dilip Sequeira, Ashish Sirasao, Fei Sun, Hanlin Tang, Michael Thomson, Frank Wei, Ephrem Wu, Lingjie Xu, Koichi Yamada, Bing Yu, George Yuan, Aaron Zhong, Peizhao Zhang, Yuchen Zhou

ISCA - May 22, 2020

RecNMP: Accelerating Personalized Recommendation with Near-Memory Processing

Liu Ke, Udit Gupta, Benjamin Youngjae Cho, David Brooks, Vikas Chandra, Utku Diril, Amin Firoozshahian, Kim Hazelwood, Bill Jia, Hsien-Hsin S. Lee, Meng Li, Bert Maher, Dheevatsa Mudigere, Maxim Naumov, Martin Schatz, Mikhail Smelyanskiy, Xiaodong Wang, Brandon Reagen, Carole-Jean Wu, Mark Hempstead, Xuan Zhang

ISCA - May 22, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy