Compositionality and Generalization in Emergent Languages

Association for Computational Linguistics (ACL)


Natural language allows us to refer to novel composite concepts by combining expressions denoting their parts according to systematic rules, a property known as compositionality. In this paper, we study whether the language emerging in deep multi-agent simulations possesses a similar ability to refer to novel primitive combinations, and whether it accomplishes this feat by strategies akin to human-language compositionality.
Equipped with new ways to measure compositionality in emergent languages inspired by disentanglement in representation learning, we
establish three main results. First, given sufficiently large input spaces, the emergent language will naturally develop the ability to refer to novel composite concepts. Second, there is no correlation between the degree of compositionality of an emergent language and its ability to generalize. Third, while compositionality is not necessary for generalization, it provides an advantage in terms of language transmission: The more compositional a language is, the more easily it will be picked up by new learners, even when the latter differ in architecture from the original agents. We conclude that compositionality does not arise from simple generalization pressure, but if an emergent language does chance upon it, it will be more likely to survive and thrive.

Related Publications

All Publications

Audio-Visual Waypoints for Navigation

Changan Chen, Sagnik Majumder, Ziad Al-Halah, Ruohan Gao, Santhosh K. Ramakrishnan, Kristen Grauman

arXiv - August 21, 2020

Question and Answer Test-Train Overlap in Open-Domain Question Answering Datasets

Patrick Lewis, Pontus Stenetorp, Sebastian Riedel

arXiv - August 5, 2020

Robust Market Equilibria with Uncertain Preferences

Riley Murray, Christian Kroer, Alex Peysakhovich, Parikshit Shah

AAAI - February 12, 2020

Weak-Attention Suppression For Transformer Based Speech Recognition

Yangyang Shi, Yongqiang Wang, Chunyang Wu, Christian Fuegen, Frank Zhang, Duc Le, Ching-Feng Yeh, Michael L. Seltzer

Interspeech - October 26, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy