Publication

Coded Machine Unlearning

IEEE Access Journal (IEEE Access)


Abstract

There are applications that may require removing the trace of a sample from the system, e.g., a user requests their data to be deleted, or corrupted data is discovered. Simply removing a sample from storage units does not necessarily remove its entire trace since downstream machine learning models may store some information about the samples used to train them. A sample can be perfectly unlearned if we retrain all models that used it from scratch with that sample removed from their training dataset. When multiple such unlearning requests are expected to be served, unlearning by retraining becomes prohibitively expensive. Ensemble learning enables the training data to be split into smaller disjoint shards that are assigned to non-communicating weak learners. Each shard is used to produce a weak model. These models are then aggregated to produce the final central model. This setup introduces an inherent trade-off between performance and unlearning cost, as reducing the shard size reduces the unlearning cost but may cause degradation in performance. In this paper, we propose a coded learning protocol where we utilize linear encoders to encode the training data into shards prior to the learning phase. We also present the corresponding unlearning protocol and show that it satisfies the perfect unlearning criterion. Our experimental results show that the proposed coded machine unlearning provides a better performance versus unlearning cost trade-off compared to the uncoded baseline.

Related Publications

All Publications

Federated Learning for User Privacy and Data Confidentiality Workshop At ICML - July 24, 2021

Federated Learning with Buffered Asynchronous Aggregation

John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Michael Rabbat, Mani Malek, Dzmitry Huba

UAI - July 28, 2021

A Nonmyopic Approach to Cost-Constrained Bayesian Optimization

Eric Hans Lee, David Eriksson, Valerio Perrone, Matthias Seeger

ACM MM - October 20, 2021

EVRNet: Efficient Video Restoration on Edge Devices

Sachin Mehta, Amit Kumar, Fitsum Reda, Varun Nasery, Vikram Mulukutla, Rakesh Ranjan, Vikas Chandra

ICCV - October 11, 2021

Egocentric Pose Estimation from Human Vision Span

Hao Jiang, Vamsi Krishna Ithapu

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy