Publication

Bi-directional Domain Adaptation for Sim2Real Transfer of Embodied Navigation Agents

IEEE Robotics and Automation Letters (RA-L)


Abstract

Deep reinforcement learning models are notoriously data hungry, yet real-world data is expensive and time consuming to obtain. The solution that many have turned to is to use simulation for training before deploying the robot in a real environment. Simulation offers the ability to train large numbers of robots in parallel, and offers an abundance of data. However, no simulation is perfect, and robots trained solely in simulation fail to generalize to the real-world, resulting in a “sim-vs-real gap”. How can we overcome the trade-off between the abundance of less accurate, artificial data from simulators and the scarcity of reliable, real-world data? In this paper, we propose Bi-directional Domain Adaptation (BDA), a novel approach to bridge the sim- vs-real gap in both directions– real2sim to bridge the visual domain gap, and sim2real to bridge the dynamics domain gap. We demonstrate the benefits of BDA on the task of PointGoal Navigation. BDA with only 5k real-world (state, action, next- state) samples matches the performance of a policy fine-tuned with ∼600k samples, resulting in a speed-up of ∼120×.

Related Publications

All Publications

CVPR - June 18, 2021

NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go

Marvin Eisenberger, David Novotny, Gael Kerchenbaum, Patrick Labatut, Natalia Neverova, Daniel Cremers, Andrea Vedaldi

CVPR - June 18, 2021

Discovering Relationships between Object Categories via Universal Canonical Maps

Natalia Neverova, Artsiom Sanakoyeu, Patrick Labatut, David Novotny, Andrea Vedaldi

CVPR - June 17, 2021

Connecting What to Say With Where to Look by Modeling Human Attention Traces

Zihang Meng, Licheng Yu, Ning Zhang, Tamara Berg, Babak Damavandi, Vikas Singh, Amy Bearman

ICRA - May 20, 2019

Data-efficient Learning of Morphology and Controller for a Microrobot

Thomas Liao, Grant Wang, Brian Yang, Rene Lee, Kristofer Pister, Sergey Levine

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy