Benchmarking LF-MMI, CTC and RNN-T Criteria for Streaming ASR

IEEE Spoken Language Technology Workshop (SLT)


In this work, to measure the accuracy and efficiency for a latency-controlled streaming automatic speech recognition (ASR) application, we perform comprehensive evaluations on three popular training criteria: LF-MMI, CTC and RNN-T. In transcribing social media videos of 7 languages with training data 3K – 14K hours, we conduct large-scale controlled experimentation across each criterion using identical datasets and encoder model architecture. We find that RNN-T has consistent wins in ASR accuracy, while CTC models excel at inference efficiency. Moreover, we selectively examine various modeling strategies for different training criteria, including modeling units, encoder architectures, pre-training, etc. Given such large-scale real-world streaming ASR application, to our best knowledge, we present the first comprehensive benchmark on these three widely used training criteria across a great many languages.

Related Publications

All Publications

Electronics (MDPI) Journal - November 4, 2021

Performance Evaluation of Offline Speech Recognition on Edge Devices

Santosh Gondi, Vineel Pratap

NeurIPS - December 6, 2021

Parallel Bayesian Optimization of Multiple Noisy Objectives with Expected Hypervolume Improvement

Samuel Daulton, Maximilian Balandat, Eytan Bakshy

EMNLP Conference on Machine Translation (WMT) - October 1, 2020

BERGAMOT-LATTE Submissions for the WMT20 Quality Estimation Shared Task

Marina Fomicheva, Shuo Sun, Lisa Yankovskaya, Frédéric Blain, Vishrav Chaudhary, Mark Fishel, Francisco Guzmán, Lucia Specia

Electronics (MDPI) Journal - November 10, 2021

Performance and Efficiency Evaluation of ASR Inference on the Edge

Santosh Gondi, Vineel Pratap

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookie Policy