Approximate Oracles and Synergy in Software Energy Search Spaces

IEEE Transactions on Software Engineering (TSE)


Reducing the energy consumption of software systems though optimizations techniques such as genetic improvement is gaining interest. However, efficient and effective improvement of software systems requires a better understanding of the code-change search space. One important choice practitioners have is whether to preserve the system’s original output or permit approximation with each scenario having its own search space characteristics. When output preservation is a hard constraint, we report that the maximum energy reduction achievable by the modification operators is 2.69% (0.76% on average). By contrast, this figure increases dramatically to 95.60% (33.90% on average) when approximation is permitted, indicating the critical importance of approximate output quality assessment for code optimization. We investigate synergy, a phenomenon that occurs when simultaneously applied source code modifications produce an effect greater than their individual sum. Our results reveal that 12.0% of all joint code modifications produced such a synergistic effect though 38.5% produce an antagonistic interaction in which simultaneously applied modifications are less effective than when applied individually. This highlights the need for more advanced search-based approaches.

Related Publications

All Publications

CVPR - June 18, 2021

NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go

Marvin Eisenberger, David Novotny, Gael Kerchenbaum, Patrick Labatut, Natalia Neverova, Daniel Cremers, Andrea Vedaldi

CVPR - June 18, 2021

Discovering Relationships between Object Categories via Universal Canonical Maps

Natalia Neverova, Artsiom Sanakoyeu, Patrick Labatut, David Novotny, Andrea Vedaldi

CVPR - June 17, 2021

Connecting What to Say With Where to Look by Modeling Human Attention Traces

Zihang Meng, Licheng Yu, Ning Zhang, Tamara Berg, Babak Damavandi, Vikas Singh, Amy Bearman

DSN - June 21, 2021

Near-Realtime Server Reboot Monitoring and Root Cause Analysis in a Large-Scale System

Fred Lin, Bhargav Bolla, Eric Pinkham, Neil Kodner, Daniel Moore, Amol Desai, Sriram Sankar

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy