A Flexible Spiraling-Metasurface as a Versatile Haptic Interface

Advanced Material Technologies


Haptic feedback is the most significant sensory interface following visual cues. Developing thin, flexible surfaces that function as haptic interfaces is important for augmenting virtual reality, wearable devices, robotics and prostheses. For example, adding a haptic feedback interface to prosthesis could improve their acceptance among amputees. State of the art programmable interfaces targeting the skin feel-of-touch through mechano-receptors are limited by inadequate sensory feedback, cumbersome mechanisms, or narrow frequency of operation. Here, a flexible metasurface is presented as a generic haptic interface capable of producing complex tactile patterns on the human skin at wide range of frequencies. The metasurface is composed of multiple “pixels” that can locally amplify both input displacements and forces. Each of these pixels encodes various deformation patterns capable of producing different sensations on contact. The metasurface can transform a harmonic signal containing multiple frequencies into a complex preprogrammed tactile pattern. The findings, corroborated by user studies conducted on human candidates, can open new avenues for wearable and robotic interfaces.

Related Publications

All Publications

Acustico: Surface Tap Detection and Localization using Wrist-based Acoustic TDOA Sensing

Jun Gong, Aakar Gupta, Hrvoje Benko

ACM UIST - October 19, 2020

Constraining Dense Hand Surface Tracking with Elasticity

Breannan Smith, Chenglei Wu, He Wen, Patrick Peluse, Yaser Sheikh, Jessica Hodgins, Takaaki Shiratori

SIGGRAPH Asia - December 1, 2020

Enhancement of Ambisonics signals using time-frequency masking

Moti Lugasi, Boaz Rafaely

AVAR - August 17, 2020

Beamforming-based Binaural Reproduction by Matching of Binaural Signals

Lior Madmoni, Jacob Donley, Vladimir Tourbabin, Boaz Rafaely

AVAR - August 17, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy