Publication

2.5D Visual Sound

Conference Computer Vision and Pattern Recognition (CVPR)


Abstract

Binaural audio provides a listener with 3D sound sensation, allowing a rich perceptual experience of the scene. However, binaural recordings are scarcely available and require nontrivial expertise and equipment to obtain. We propose to convert common monaural audio into binaural audio by leveraging video. The key idea is that visual frames reveal significant spatial cues that, while explicitly lacking in the accompanying single-channel audio, are strongly linked to it. Our multi-modal approach recovers this link from unlabeled video. We devise a deep convolutional neural network that learns to decode the monaural (single-channel) soundtrack into its binaural counterpart by injecting visual information about object and scene configurations. We call the resulting output 2.5D visual sound—the visual stream helps “lift” the flat single channel audio into spatialized sound. In addition to sound generation, we show the self-supervised representation learned by our network benefits audio-visual source separation. Our video results: http://vision.cs.utexas.edu/projects/2.5D_visual_sound/

Related Publications

All Publications

IROS - September 27, 2021

Joint Sampling and Trajectory Optimization over Graphs for Online Motion Planning

Kalyan Vasudev Alwala, Mustafa Mukadam

RecSys - September 27, 2021

Transformers4Rec: Bridging the Gap between NLP and Sequential / Session-Based Recommendation

Gabriel De Souza Pereira Moreira, Sara Rabhi, Jeong Min Lee, Ronay Ak, Even Oldridge

EMNLP - October 31, 2021

Evaluation Paradigms in Question Answering

Pedro Rodriguez, Jordan Boyd-Graber

ASRU - December 13, 2021

Incorporating Real-world Noisy Speech in Neural-network-based Speech Enhancement Systems

Yangyang Xia, Buye Xu, Anurag Kumar

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy