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1. Architecture Details

1.1. Feature Extraction Network

Fig. 2 shows the architecture of the feature extraction
network. We employ a shallow convolutional encoder-
decoder network with no narrow bottlenecks to retain as
much local information as possible. This is in contrast to
U-Net or Hour Glass feature extraction networks. We also
present the cNeRF baseline architecture used for compari-
son, see Fig. 4

1.2. Positional Features

To generate positional features, we use positional encod-
ing as described in Mildenhall et al [1]. Particularly, for
each point along the ray X and view direction d, we calcu-
late the encoding as follows:

φ(X) = [sin(20πX), cos(20πX), ..., sin(2l−1πX), cos(2l−1πX)]

Where we choose l = 10 for encoding the position and
l = 4 for encoding the direction.

1.3. Radiance Field Network

Fig. 3 shows the architecture of our radiance field net-
work. Our architecture is inspired by Mildenhall et al.[1],
but we employ more view-dependent layers at the end of the
network.

2. Additional Results

2.1. Hair integration

One advantage of volumetric models is that models
learned from different sources can be combined seamlessly,
since the rendering involves a ray marching step through
the learned volume. Fig 5 shows the integration of an inde-
pendently learned hair volume with a radiance field learned
using pixel aligned volumetric avatars.

Figure 1. Robustness test. Pose with added Gaussian noise of stan-
dard deviation of 0.1 and 1.0 (top: noise added to camera transla-
tion, bottom: noise added to camera rotation).

2.2. View Synthesis

Fig. 7 and Fig. 8 demonstrate additional view synthesis
results on novel identities.

2.3. Sensitivity to camera parameters

We test the sensitivity of our approach to noise in the
pose estimate. Our models, similar to NeRF, are sensitive
to errors in camera pose during training. At test time, it
is more robust due to information averaging from multi-
ple views, but shows ghosting artifacts under large noise
applied to translation or rotation parameters, as shown in
Fig. 1.

2.4. Failure case

Fig. 6 shows a failure case of capturing the geometry of
glasses for out-of-distribution data.
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Figure 2. Architecture of the feature extraction network. We use a shallow convolutional encoder-decoder network to retain local informa-
tion to a greater extent. The output feature map has the same spatial dimensions as the input image.

Figure 3. Architecture of our radiance field network. We use the camera information ci to generate camera summarized features to allow
for feature aggregation from different conditioning viewpoints.
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Figure 4. Architecture of the cNerf baseline. This baselines learns a global encoding for each conditioning viewpoint and retains no local
pixel level information that can be used by the radiance field network.

Figure 5. Independently learned hair volume integrated with a pixel-aligned volumetric avatar. The hair volume is learned using pre-
computed hair segmentation supervision.

Figure 6. Generalization to out-of-distribution data (left: inputs, right: results) fails to capture geometry of glasses
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