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Abstract

In this paper, we use the framework of
neural machine translation to learn joint
sentence representations across six very
different languages. Our aim is that a rep-
resentation which is independent of the
language, is likely to capture the under-
lying semantics. We define a new cross-
lingual similarity measure, compare up to
1.4M sentence representations and study
the characteristics of close sentences. We
provide experimental evidence that sen-
tences that are close in embedding space
are indeed semantically highly related,
but often have quite different structure
and syntax. These relations also hold
when comparing sentences in different
languages.

1 Introduction

It is today common practice to use distributed
representations of words, often called word em-
beddings, in almost all NLP applications. It
has been shown that syntactic and semantic re-
lations can be captured in this embedding space,
see for instance (Mikolov et al., 2013). To pro-
cess sequences of words, ie. sentences or small
paragraphs, these word embeddings need to be
“combined” into a representation of the whole
sequence. Common approaches include: sim-
ple techniques like bag-of-words or some type of
pooling, eg. (Arora et al., 2017), recursive neural
networks, eg. (Socher et al., 2011), recurrent neu-
ral networks, in particular LSTMs, eg. (Cho et al.,
2014), convolutional neural networks, eg. (Col-
lobert and Weston, 2008; Zhang et al., 2015) or
hierarchical approaches, eg. (Zhao et al., 2015).

In some NLP applications, both the input and
output are sentences. A very popular approach
to handle such tasks is the so-called “encoder-

decoder approach”, also named “sequence-to-
sequence learning (seq2seq)”. The main idea is
to first encode the input sentence into an inter-
nal representation, and then to generate the output
sentence from this representation. A very success-
ful application of this paradigm is neural machine
translation (NMT), see for instance (Kalchbrenner
and Blunsom, 2013; Cho et al., 2014; Sutskever
et al., 2014). Current best practice is to use recur-
rent neural networks for the encoder and decoder,
but alternative architectures like convolutional net-
works have been also explored.

The performance of these vanilla seq2seq mod-
els substantially degrades with the sequence
length since it is difficult to encode long sequences
into a single, fixed-size representation. A plausi-
ble solution is the so-called attention mechanism
(Bahdanau et al., 2015): where the generation of
each target word is conditioned on a weighted sub-
set of source words, instead of the full sentence.
NMT has been also extended to handle several
source and/or target languages at once, with the
goal of achieving better translation quality than
with separately trained NMT systems, in particu-
lar for under resourced languages, see for instance
(Dong et al., 2015; Zoph and Knight, 2016; Luong
et al., 2015a; Firat et al., 2016a).

In this work, we aim at learning multilingual
sentence representations, i.e. which are indepen-
dent of the language. Since we have to compare
these representations among each other, for the
same or between multiple languages, we only con-
sider representations of fixed size.

There are many motivations to learn such a mul-
tilingual sentence representation, in particular:

• it is likely to capture the underlying seman-
tics of the sentence (since the meaning is the
only common characteristic of a sentence for-
mulated in several languages);

• it has the potential to transfer many sentence



processing applications to other languages
(classification, sentiment analysis, semantic
similarity, etc), without the need for language
specific training data;

• it enables multilingual search;

• such representation could be considered as
sort of a continuous space interlingua.

To train these multilingual sentence embed-
dings we are using the framework of NMT with
multiple encoders and decoders. We first describe
our model in detail, relate it to existing research,
and then present an experimental evaluation.

2 Architecture

We propose to use multiple encoders and de-
coders, one for each source and target language
respectively. The notion of multiple input lan-
guages can be also extended to different modali-
ties, e.g. speech and images. One can also envi-
sion to add classification tasks, in addition to se-
quence generation. Our ultimate goal is to jointly
train this generic architecture on many tasks at
once, to obtain a universal multilingual and -modal
representation (see illustration in Figure 1). To
ease the comparison and search, we are focusing
on representations of fixed-size, independently of
the length of the input (and output) sequence. This
choice has certainly an impact on the performance
for very long sequences, ie. in the order of more
than fifty words, but we argue that such long sen-
tences are probably not very frequent in every day
communication. We would also like to empha-
size that the goal of this work is not to improve
NMT (for multiple languages), but to use the NMT
framework to learn multilingual sentence embed-
dings. Once the system is trained, the decoders
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Figure 1: Generic multilingual and -modal en-
coder/decoder architecture.

are not used any more. This means in particular
that the usual attention mechanism cannot be used
since the attention weights are usually conditioned
on the decoder outputs. A possible solution could
be to condition the attention on the inputs only, for
instance so-called self-attention (Liu et al., 2016)
or inner-attention (Lin et al., 2017).

To fix ideas, let us consider that we have corpora
in L different languages which can be pairwise or
N -way parallel, N ≤ L. This means that our ar-
chitecture is composed of L encoders and L de-
coders respectively. However, this does not mean
that we always provide input to all encoders, or
targets for all decoders, but we change the used
models at each mini-batch. One could for instance
perform one mini-batch with two input languages
and one output language (which requires an 3-way
parallel corpus), and use one (different) input and
output language in the next mini-batch (which re-
quire a bitext). We call this partial training paths.
Note that we can also use monolingual data in this
framework, ie. the input and output language is
identical.

There are many possibilities to define partial
training paths, with 1 < M,N ≤ L.

1:1 translating from one source into one target
language respectively.

M:1 presenting simultaneously several source
languages at the input.

1:N translating from one source language into
multiple target languages.

M:N this is a combination of the preceding two
strategies and the most general approach. Re-
member that not all inputs and outputs need
to be present at each training step.

Our goal is to learn joint sentence representa-
tions, which are as close as possible when sen-
tences are presented in different languages at the
input. If we use 1:1 training, changing the lan-
guage pair at each mini-batch (input and output),
it is quite unlikely that the system would learn a
common joint representation which is independent
of the source language. A variant of 1:1 training is
to always use the same decoder, but many differ-
ent encoders. Since the decoder is shared for all
the input languages, and the capacity of the model
is limited, there’s an incentive for the system to
use the same representations for all the encoders.
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Figure 2: Possible partial training paths when four languages are available (En, Fr, Es and Ru).
From left: 1:1, 2:1 and 3:1 strategy, using En as common target language.
Right: 1:3 strategy, translating from one source to the three other target languages.

This training strategy only requires bitexts with
one common language (usually English). An im-
portant drawback, however, is that we will not ob-
tain an embedding of this common language since
it is never used at the input.1

Using multiple languages at the input at the
same time and combining the corresponding sen-
tence embeddings, ie. the M:1 strategy, has in
principle the potential to learn joint sentence em-
beddings, if an appropriate technique is used to
combine the individual embeddings. The most
straightforward approach is to average the embed-
dings. This was used for instance in (Firat et al.,
2016b) in a multilingual NMT system with atten-
tion. The joint embedding could be also enforced
by some type of regularizer. Again, having one
dedicated output language makes it impossible to
learn a representation for it.

The 1:N strategy is an interesting extension
of 1:1. The idea is translate from one input lan-
guage simultaneously to all L-1 other languages,
excluding the one at the input (ie. no auto-
encoder). The source and the set of target lan-
guages is changed at each mini-batch. By these
means, every input language has at least one tar-
get language in common with all input languages,
and each target language has at least one input lan-
guage in common. On one hand hand, this strategy
makes it possible to learn sentence embeddings for
all languages, but one the other hand, it requires
L-way parallel training data. Although bitexts are
usually used in MT, there are also several corpora
which can be aligned for more than two languages
(eg. Eurpoarl, TED, UN). Finally, the N:M strat-

1One could also use the common output language at the
input. This corresponds to training an auto-encoder which
is easier than a translation model and may have an negative
impact.

egy is the most generic one which combines all
above techniques. These different training strate-
gies are illustrated in Figure 2 for four languages.

2.1 Related work

The use of multiple encoders and decoders was
first studied in the context of neural MT. Dong
et al. (2015) used multiple decoders, i.e. 1:N
training, to achieve improved NMT performance.
Zoph and Knight (2016) and Firat et al. (2016b),
on the other hand, used multiple encoders, i.e.
M:1 training. It’s not surprising that this comple-
mentarity improves MT quality, in comparison to
one input language only. Many different config-
urations were explored by (Luong et al., 2015a)
for seq2seq models. Firat et al. (2016a) were the
first to use multiple encoders and decoders with a
shared attention mechanism. This approach was
further refined to enable zero-resource NMT (Fi-
rat et al., 2016b). Alternatively, it was proposed to
handle multiple source and target languages with
one encoder and decoder only, using a special to-
ken to indicate the target language (Johnson et
al., 2016) to enable zero-shot NMT. To best of
our knowledge, all these works focus on the im-
provement and extensions of seq2seq modeling,
and fixed-sized vector representations have not an-
alyzed in depth in a multilingual context.

Several publications consider joint representa-
tions in a multimodal context, usually text and
images, for instance (Frome et al., 2013; Ngiam
et al., 2011; Nakayama and Nishida, 2016). The
usual approach is to optimize a distance or correla-
tion between the two representations or predictive
auto-encoders (Chandar et al., 2013). The same
approach was applied to transliteration and cap-
tioning (Saha et al., 2016).

There is a large body of research on sentence



representations. Common approaches include:
simple techniques like bag-of-words or some type
of pooling, eg (Arora et al., 2017), recursive NNs,
eg. (Socher et al., 2011), recurrent NNs, in par-
ticular LSTMs, eg. (Cho et al., 2014), convo-
lutional NNs, eg. (Collobert and Weston, 2008;
Zhang et al., 2015) or hierarchical approaches, eg.
(Zhao et al., 2015). In all these works, the sen-
tence representations are learned for one language
only. It is important to note that our multiple en-
coder/decoder architecture and the different train-
ing paths make no assumption on the type of en-
coder and decoder used. In principle, all these sen-
tence representations methods could be used. This
is left for future research.

There are several works on learning multilin-
gual representations at document level (Hermann
and Blunsom, 2014; Zhou et al., 2016b; Pham
et al., 2015). (Hermann and Blunsom, 2014) pro-
posed a compositional vector model to learn doc-
ument level representations. Their model is based
on bag of words/bi-gram composition. (Pham
et al., 2015) directly learn a vector representa-
tions for sentences in the absence of compositional
property. (Zhou et al., 2016b) learn bilingual
document representation by minimizing Euclidean
distance between document representations and
their translation.

Other multilingual sentence representation
learning techniques include BAE (Chandar et al.,
2013) which trains bilingual autoencoders with
the objective of minimizing reconstruction error
between two languages, and BRAVE (Bilingual
paRAgraph VEctors) (Mogadala and Rettinger,
2016) which learns both bilingual word em-
beddings and sentence embeddings from either
sentence-aligned parallel corpora (BRAVE-S), or
label-aligned non-parallel corpora (BRAVE-D).

Finally, many papers address the problem of
learning bi- or multilingual word representations
which are used to perform cross-lingual document
classification. They are trained either on word
alignments or sentence-aligned parallel corpora,
or both. I-Matrix (Klementiev et al., 2012) uses
word alignments to do multi-task learning, where
each word is a single task and the objective is
to move frequently aligned words closer in the
joint embeddings space. DWA (Distributed Word
Alignment) (Kociský et al., 2014) learns word
alignments and bilingual word embeddings simul-
taneously using translation probability as objec-

tive. Without using word alignments, BilBOWA
(Gouews et al., 2014) optimizes both monolin-
gual and bilingual objectives, uses Skip-gram as
monolingual loss, while formulating the bilin-
gual loss as Euclidean distance between bag-of-
words representations of aligned sentences. Un-
supAlign (Luong et al., 2015b) learns bilingual
word embeddings by extending the monolingual
Skip-gram model with bilingual contexts based on
word alignments within the sentence. TransGram
(Coulmance et al., 2015) is similar to (Pham et al.,
2015) but treats all words in the parallel sentence
as context words, thus eliminating the need for
word alignments.

3 Evaluation protocol

An important question is how to evaluate multilin-
gual joint sentence embeddings. Let us first define
some desired properties of such embeddings:

• multilingual closeness: the representations
of the same sentence for different languages
should be as similar as possible;

• semantic closeness: similar sentences
should be also close in the embeddings
space, ie. sentences conveying the same
meaning, but not necessarily the syntactic
structure and word choice;

• preservation of content: sentence represen-
tations are usually used in the context of a
task, eg. classification, multilingual NMT
or semantic relatedness. This requires that
enough information is preserved in the rep-
resentations to perform the task;

• scalability to many languages: it is desir-
able that the metric can be extended to many
languages without important computational
cost or need for human labeling of data.

Two main approaches have been used in the
literature to evaluate multilingual sentence em-
beddings: 1) cross-lingual document classifica-
tion based on the Reuters corpus, first described
in (Klementiev et al., 2012); and 2) cross-lingual
evaluation of semantic textual similarity (in short
STS). This task was first introduced in the 2016
edition of SemEval (Agirre et al., 2016). Both
tasks focus on the evaluation of joint sentence rep-
resentations of two languages only. In the Reuters
task, a document classifier is trained on English



sentence representations and then applied to texts
in another language, and in the opposite direc-
tion respectively. STS seeks to measure the de-
gree of semantic equivalence between two sen-
tences (or small paragraphs). Semantic similarity
is expressed by a score between 0 (the two sen-
tences are completely dissimilar) and 5 (the two
sentences are completely equivalent). In 2016, a
cross lingual task was introduced (Es/En) and ex-
tended to two more language pairs in 2017 (Ar/En
and Tr/En).

In this work, we propose an additional evalu-
ation framework for multilingual joint represen-
tations, based on similarity search. Our metric
can be automatically calculated without the need
of new human-labeled data and scaled to many
languages and large corpora. We only need col-
lections of S sentences, and their translations in
L different languages, ie. spi , i = 1 . . . S, p =
1 . . . L. Such L-way parallel corpora are freely
available, for instance Europarl2 (20 languages),
the UN corpus, 6 languages (Ziemski et al., 2016),
or TED, 23 languages, (Cettolo et al., 2012).

Algorithm 1 Multilingual similarity search
1: L: number of languages
2: S: number of sentences
3: Epq: error between languages p and q
4: R(spi ): embedding of a sentence
5: D(): some distance metric
6: for p = 1 . . . L do
7: for q = 1 . . . L, q 6= p do
8: Epq = 0
9: for i = 1 . . . S do

10: if arg min
j=1...S

D(R(spi ), R(sqj)) 6= i then

11: Epq ++
12: end if
13: end for
14: end for
15: end for

The details of our approach are given in algo-
rithm 1. The basic idea is to search the closest
sentence in all S sentences, and count an error if
it is not the reference translation. This requires
the calculation of S2 distance metrics and makes
only sense when there are no duplicate sentences
in the corpus. With increasing S it may be also
likely that the corpus contains several alternative
valid translations which could be closer than the

2http://www.statmt.org/europarl/

reference one. This is difficult to handle automat-
ically at large scale and counted as error by our
algorithm.

Similarity search mainly evaluates the multilin-
gual closeness property and can be easily scaled
to many languages. We will report results how the
similarity error rate is influenced by the number of
language pairs and the size of the corpus. We have
compared three distance metrics: L2, inner prod-
uct and cosine. In general, cosine performed best.
Note that all metrics are equivalent if the vectors
are normalized.

4 Experimental evaluation

We have performed all our experiments with the
freely available UN corpus. It contains about 12M
sentences in six languages (En, Fr, Es, Ru, Ar and
Zh). We have used the version which is 6-way par-
allel (about 8.3M sentences). This corpus comes
with a predefined Dev and Test set (4000 sentences
each). We lowercase all texts, limit the length of
the training data to 50 words and use byte-pair en-
coding (BPE) with a 20k vocabulary. BPE allows
to limit the size of the decoder output vocabulary,
it has only a small impact on the sentence length
(≈ +20%) and it showed similar or even superior
performance in NMT in comparison to many other
techniques to limit the size of the output vocabu-
lary (Sennrich et al., 2016). We have also found
that BPE is very robust to spelling errors which is
important when handling informal texts.

4.1 Different network architectures

In this work we only consider stacked LSTMs as
encoders and decoders. In the vanilla seq2seq
NMT model, the last state of the LSTM is used
as sentence representation. There is also evidence
that deeper architectures perform better in NMT
than shallow ones, eg. (Zhou et al., 2016a; Wu et
al., 2016). Following this tendency, we performed
the first set of experiments with stacked LSTMs
with three 512-dimensional hidden layers. Deeper
architectures did not improve the performance.

We then switched to using BLSTMs followed
by max-pooling (element-wise over the sequence
length). We are not aware of works which use
max-pooling in an NMT framework. One is in-
deed tempted to assume that max-pooling makes
it more difficult to create a target sentence which
preserves all information from the source sen-
tence. On the other hand, max-pooling is success-

http://www.statmt.org/europarl/


System
Average Similarity Error

efs efsr efsra efsraz
#pairs: 6 10 15 21

One-to-one systems:
efs-r 1.97% - - -
efs-a 2.09% - - -
efsr-a 1.90% 2.40% - -
efsra-z 1.91% 2.26% 2.51% -
One-to-many systems:
efsraz-all 1.70% 1.97% 2.38% 2.59%
One-to-many systems, nhid=1024:
efsraz-all 1.36% 1.64% 1.89% 1.95%

Three layer LSTM, nhid=512
Sentence representation: last LSTM state

System
Average Similarity Error

efs efsr efsra efsraz
#pairs: 6 10 15 21

One-to-one systems:
efs-r 1.11% - - -
efs-a 1.03% - - -
efsr-a 1.11% 1.31% - -
efsra-z 1.01% 1.19% 1.25% –
One-to-many systems:
efsraz-all 0.92% 1.07% 1.15% 1.20%

One layer BLSTM, nhid=512
Sentence representation: max pooling

Table 1: Error rates of similarity search on the UN Dev corpus. Languages are abbreviated with the
following letters: e=English, f=French, s=Spanish, r=Russian, a=Arabic, z=Chinese.

fully used in various sentence classification tasks,
eg. (Conneau et al., 2017). It should be noted that
the final sentence representation has twice the di-
mension of the BLSTM hidden layer.

The word embeddings are of size 384 for all
models. We use vertical dropout with a value of
0.2 and gradients are clipped at 2. The initial
learning rate is set to 0.01 and decreased each time
performance on the Dev data does not improve.
Performance is measured by perplexity for the de-
coders and similarity error at the embedding layer
for the encoders. It is important to note that the
similarity error rate can be only calculated once
the whole development set is processed. Therefore
it is not used to provide gradients to the encoders.
Training is performed for up to five epochs with
a batch size of 96. For the smallest models, one
iteration through the training data takes about 11h.
Most models converge after two to three epochs.

Table 1 summarizes our results on the UN Dev
corpus for several systems using the one-to-one
and one-to-many partial training paths. We com-
pare training of joint representations for three to
six languages using LSTM or BLSTM encoders.
In each column, we give the average similarity er-
ror over all n(n + 1)/2 language pairs. As an ex-
ample, the system trained with En, Fr, Es and Ru
at the input and Ar at the output (“efsr-a” in the
third line), achieves an average similarity error of
1.90% over 6 language pairs3, column “efs”, and
2.40% over 10 languages pairs4, column “efsr”.

3En-Es, En-Fr, Es-En, Es-Fr, Fr-En and Fr-Es.
4En-Es, En-Fr, En-Ru, Es-En, Es-Fr, Es-Ru, Fr-En, Fr-Es,

We can make the following observations. First,
using an BLSTM with max-pooling (Table 1 right)
performs much better than an LSTM and us-
ing the last hidden state as sentence representa-
tion (Table 1 left). This was also observed for
many monolingual tasks, eg. (Conneau et al.,
2017). This is particularly true when the num-
ber of languages is increased. This performance
gain does not result from the increased dimen-
sion of the sentence representation (2×nhid) since
an 1024-dimensional LSTM only achieves 1.36%
(see last line in Table 1 left). Second, increasing
the number of languages for which we seek a joint
sentence embedding does not seem to make the
task harder: the system trained on all languages
achieves the same results (1.01%) on three lan-
guages than when training only on these languages
(1.03%). Third, the one-to-many training strat-
egy (efsraz-all, 0.92%) performs better than 1:1
(efsra-z, 1.01%). In addition, it allows to obtain a
sentence embedding for all languages, while the
common output language is excluded in the 1:1
strategy.

Finally, we have explored whether deep archi-
tectures are needed when using an BLSTM en-
coder and a max-pooling sentence representation
(see Table 2). We found no experimental evidence
that stacking several BLSTM layers is useful.

4.2 Many-to-one training strategies

In this section, we study two M:1 training strate-
gies, namely 2:1 and 3:1. Since the number of

Fr-Ru, Ru-En, Ru-Es and Ru-Fr.



Network
LSTM + last BLSTM + max-pooling

3x512 3x1024 1x256 2x256 3x256 1x512 2x512 3x512
1:1, efsra-z 2.51 – 1.44 1.21 1.52 1.32 1.25 1.41
1:M, efsraz-all 2.38 1.89 1.27 1.30 1.27 1.15 1.17 1.25

Table 2: Error rates of similarity search on the UN Dev corpus for five language pairs (efsra). Compari-
sion of LSTMs and BLSTMs of different size and depth.

combinations quickly increases with the number
of input languages, we limit these experiences to
three input languages (system efs-a). In that case,
we have three 1:1 training paths (En→Ar, Fr→Ar
and Es→Ar), three 2:1 training paths (En+Fr→Ar,
En+Es→Ar and Fr+Es→Ar) and one 3:1 configu-
ration (En+Fr+Es→Ar). This is illustrated in Fig-
ure 2. To obtain efficient training, we use homo-
geneous mini-batches, ie. the number of encoders
and decoders is constant. Examples in a mini-
batch are sampled according to a coefficient. In
order to make a fair comparison, these resampling
coefficient were chosen so that each encoders al-
ways sees the same number of sentences (roughly
8.3M). We refer to the different runs with an ID
(first column in Table 3). As an example, for the
experiment with ID l2a, 90% of the mini-batches
are 1:1 and 5% are 2:1. Note that that the 2:1 sam-
ples have a coefficient of 0.05 since two encoders
are simultaneously used.

The first striking result is that presenting all in-

# input languages Similarity
ID 1 2 3 Error

One M:1 strategy
1 1 – – 1.03%
2 – 0.5 – 1.85%
3 – – 1 67.9%

Combining 1:1 and 2:1 strategies
12a 0.9 0.05 – 1.09%
12b 0.8 0.10 – 1.16%
12c 0.7 0.15 – 1.15%
12d 0.6 0.20 – 1.12%
12e 0.5 0.25 – 1.22%

Combining 1:1 and 3:1 strategies
13 0.5 – 0.5 1.31%

Combining 1:1, 2:1 and 3:1 strategies
123a 0.33 0.16 0.33 1.32%
123b 0.25 0.25 0.25 1.35%

Table 3: Different M:1 strategies for three input
languages (system efs-a). The baseline with the
1:1 strategy is 1.03% (line with ID 1).

put languages at once and averaging the three sen-
tence representations (3:1, ID 3) does not allow to
learn joint representations. We are however able
to learn joint representations with the 2:1 strat-
egy (ID 2), but the performance is worse than the
1:1 baseline (1.85% versus 1.03%). We are also
tried to alternate between 1:1 and 2:1 mini-batches
with increasing resampling coefficients (ID 12a to
12e). The idea is that each encoder learns to pro-
vide a sentence representation when used alone
and when used with another one. However, we ob-
serve that adding 2:1 training paths is not useful:
the similarity error increases. The same observa-
tion holds when adding 3:1 training paths (ID 13
and 123). Overall, we were not able to improve the
baseline of 1.03% similarity error obtained with a
simple 1:1 training strategy. Therefore, we did not
try the even more complex M:N paths. This failure
could be attributed to the fact that we simply av-
erage multiple sentence representations. In future
research, we will investigate other possibilities, eg.
based on correlation like proposed in (Saha et al.,
2016; Chandar et al., 2016).

Detailed similarity search error rates for all six
languages, including Zh, of our best system are
given in Table 4. Overall, the error rates vary only
slightly from the average of 1.2% although the six
languages differ significantly with respect to mor-
phology, inflection, word order, etc. In particular,
Chinese is handled as well as the other languages.
This is in nice contrast to many other NLP appli-
cation, in particular NMT, for which the perfor-
mances on Chinese are significantly below those
of other languages. All error rates are below 1.7%.

4.3 Large scale out-of domain similarity
search

In this section, we evaluate our sentence represen-
tation on out-of domain data. We are not aware
of another huge corpus which is 6-way parallel for
the same languages than the UN corpus. There-
fore, we have selected the Europarl corpus and
limit our study to three common languages (En,



Target language
Src En Fr Es Ru Ar Zh All
En – 1.10 0.70 1.07 1.05 1.15 1.02
Fr 0.97 – 0.95 1.55 1.65 1.68 1.36
Es 0.68 1.10 – 1.20 1.35 1.27 1.12
Ru 0.78 1.52 1.23 – 1.32 1.32 1.23
Ar 0.78 1.52 1.07 1.48 – 1.23 1.22
Zh 0.97 1.55 1.12 1.35 1.30 – 1.26
All 0.83 1.36 1.02 1.33 1.33 1.33 1.20

Table 4: Pair-wise error rates of similarity search
for 6 languages (UN Dev). Training was per-
formed with a one layer BLSTM with 512 hid-
dens, max-pooling and the “efsraz-all” strategy.

Fr and Es). After excluding duplicates and limit-
ing the sentence length to fifty tokens, we dispose
of almost 1.5 million 3-way parallel sentences.

The two training strategies “efsra-z” and
“efsraz-all” achieve the same similarity error rate
of about 7.7%. We argue that this is an interest-
ing result given the size of the corpus (1.46M sen-
tences) and the fact that it contains several sen-
tences which are very similar (e.g. “The ses-
sion resumes on DATE”). Using the last state of
an LSTM 3x512 achieves an error rate of 12.2%.
Evaluating the similarity error requires the calcu-
lation of 1.46M2 distances for each language pair.
This can be very efficiently performed with the
FAISS open-source toolkit (Johnson et al., 2017)
which offers many options to increase the speed
of nearest neighbor search. Its implementation of
brute-force L2 search was sufficient for our pur-
poses.

4.4 Examples of multilingual search

On the next page, we give several examples of
similarity search. For each example, we give the
query and the five closest sentences. Remember
that we use the cosine distance, i.e. the value of 1.0
is a perfect match and smaller values are worse.

The first example in Table 5 shows two simple
query sentences for which four paraphrases were
found in the Europarl corpus. The value of the co-
sine distance clearly indicates the closeness (the
last three sentences in Table 5 left only share some
aspects). A more complicated query sentence is
used in the second example (see Table 6). For such
longer sentences, it is unlikely to find several per-
fect paraphrases in the indexed corpus. However,
the system was able to retrieve sentences which

share a lot of the meaning of the query: all cover
the topic “punishment of (sexual) crimes, inde-
pendently of the country the crime is committed
in”. Finally, examples of cross-lingual similarity
search are given in Tables 7 and 8. In the first
example, all five nearest French and Spanish sen-
tences have very similar cosine distances, and all
are indeed semantically related.

Table 8 gives an example where not all retrieved
sentences have similar cosine distances. The clos-
est sentence is the correct translation, for French
and for Spanish. Both second closest sentences are
well related to the query and also have a cosine
distance close to the best scoring sentence. The
third and following sentences are less related with
the query, which is clearly reflected in the substan-
tially lower cosine distance. It’s interesting to note
that the two closest sentences are all identical, in-
dependently of the language. This can be seen as
experimental evidence of the quality of the multi-
lingual sentence embeddings.

5 Conclusion

We have shown that the framework of NMT with
multiple encoders/decoders can be used to learn
joint fixed-size sentence representations which ex-
hibit interesting linguistic characteristics. We have
explored several training paradigms which corre-
spond to partial paths in the whole architecture.
We have proposed a new evaluation protocol of
multilingual similarity search which easily scales
to many languages and large corpora. We were
able to obtain an average cross-lingual similar-
ity error rate of 1.2% for all 21 languages pairs
between six languages5 which differ significantly
with respect to morphology, inflection, word or-
der, etc. We have also studied the evolution of the
similarity error rate when scaling up to 1.4 million
sentences, drawn from an out-of-domain corpus.
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Query: All kinds of obstacles must be eliminated. Query: I did not find out why.
D2=0.9051 All kinds of barriers have to be removed. D2=0.8360 I do not understand why.
D3=0.6829 All forms of violence must be prohibited. D3=0.8213 I fail to understand why.
D4=0.6738 All forms of provocation must be avoided. D4=0.7862 I cannot understand why.
D5=0.6367 All forms of social dumping must be stopped. D5=0.7804 I have no idea why.

Table 5: Five closest sentences found by monolingual similarity search in English. They are some form
of para-phrasing as long as the cosine distance is clsoe enough to 1.0. The closest sentence (distance=1)
is always identical to the query and therefore omitted.

Query All citizens who commit sexual crimes against children must be punished, regardless of whether the
crime is committed within or outside the EU.

D2=0.6626 The second proposal is to protect children against child sex tourism by all member states criminalising sexual
crimes both within and outside the EU.

D3=0.6553 We need standard national legislation throughout Europe which punishes union citizens who engage in child
sex tourism, irrespective of where the offence was committed.

D4=0.6553 The impunity of those who commit terrible crimes against their own citizens and against other people re-
gardless of their citizenship must be ended.

D5=0.6099 Any person who commits a criminal act should be punished, including those who employ the third-country
nationals, illegally and under poor conditions.

Table 6: A more complicated English sentence and the five closest sentences (excluding itself). All cover
the punishment of (sexual) crimes.

EN59177 Query Allow me, however, to comment on certain issues raised by the honourable Members.
FR59177 D1=0.7397 Permettez-moi toutefois de commenter certaines questions soulevées par les députés.
FR394434 D2=0.6435 Je voudrais commenter quelques-unes des questions soulevées par les députés.
FR791798 D3=0.6180 Je voudrais faire les commentaires suivants sur plusieurs aspects spécifiques soulevés par cer-

tains orateurs.
FR666349 D4=0.6155 Permettez-moi de dire quelques mots sur certaines questions qui ont été soulevées.
FR444790 D5=0.6090 Je voudrais juste faire quelques commentaires sur certaines des questions qui ont été soulevées.
ES59177 D1=0.7193 No obstante, permı́tanme comentar ciertas cuestiones planteadas por sus señorı́as.
ES394434 D2=0.6280 Me gustarı́a comentar algunas de las cuestiones planteadas por algunos diputados.
ES271614 D3=0.6155 No obstante, quisiera hacer algunos comentarios sobre el debate que nos ocupa.
ES661451 D4=0.6058 Por ultimo, permı́tanme que añada algunos comentarios sobre las enmiendas presentadas.
ES666285 D5=0.6055 No obstante, permı́tanme que conteste a algunos comentarios que se han realizado.

Table 7: Cross-lingual similarity search. English query and the five closest French and Spanish sen-
tences. We also provide the index of the sentences (reference=59177). All the cosine distances are close
and the sentences are indeed semantically related.

EN77622 Query And yet the report on the fight against racism does not demonstrate that the necessary
conclusions have been drawn.

FR77622 D1=0.7672 Pourtant, le rapport sur la lutte contre le racisme n’indique pas que l’on en ait tiré les conclusions
qui s’imposent.

FR1094939 D2=0.7468 Ainsi, le rapport sur la lutte contre le racisme n’indique pas que l’on en a tiré les conclusions
qui s’imposent.

FR73928 D3=0.4918 Et, comme le démontrent les faits, ce n’est pas en interdisant que l’on va obtenir des résultats.
FR1249269 D4=0.4761 Ce rapport, qui se propose de lutter contre la corruption, ne fait qu’illustrer votre incapacité à le

faire.
ES77622 D1=0.8200 Sin embargo, el informe sobre la lucha contra el racismo no muestra que se hayan extraı́do las

conclusiones necesarias.
ES1094939 D2=0.7973 Ası́, el informe sobre la lucha contra el racismo no muestra que se hayan extraı́do las conclu-

siones necesarias.
ES287052 D3=0.5172 No obstante, el informe deja mucho que desear en lo que se refiere a las medidas necesarias

para combatir el cambio climático y, por tanto, pone de relieve que el parlamento europeo no se
encuentra a la vanguardia de esta batalla.

ES74892 D4=0.5150 Y el informe de los expertos demuestra que no habı́a el control y el seguimiento necesarios.

Table 8: Cross-lingual similarity search. English query and the four closest French and Spanish sen-
tences. In both cases, the correct translation was retrieved. The second closest sentences are also seman-
tically well related to the query. However, the third (and following sentences) only cover some of the
aspects of the query. This is indeed reflected in the lower similarity score.
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