When Deep Learning Met Code Search

The ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE)


There have been multiple recent proposals on using deep neural networks for code search using natural language. Common across these proposals is the idea of embedding code and natural language queries into real vectors and then using vector distance to approximate semantic correlation between code and the query. Multiple approaches exist for learning these embeddings, including unsupervised techniques, which rely only on a corpus of code examples, and supervised techniques, which use an aligned corpus of paired code and natural language descriptions. The goal of this supervision is to produce embeddings that are more similar for a query and the corresponding desired code snippet.
Clearly, there are choices in whether to use supervised techniques at all, and if one does, what sort of network and training to use for supervision. This paper is the first to evaluate these choices systematically. To this end, we assembled implementations of state-of-the-art techniques to run on a common platform, training and evaluation corpora. To explore the design space in network complexity, we also introduced a new design point that is a minimal supervision extension to an existing unsupervised technique. Our evaluation shows that: 1. adding supervision to an existing unsupervised technique can improve performance, though not necessarily by much; 2. simple networks for supervision can be more effective that more sophisticated sequence-based networks for code search; 3. while it is common to use docstrings to carry out super-vision, there is a sizable gap between the effectiveness of docstrings and a more query-appropriate supervision corpus.

Related Publications

All Publications

SIGGRAPH - August 2, 2021

Fast Diffraction Pathfinding for Dynamic Sound Propagation

Carl Schissler, Gregor Mückl, Paul Calamia

ISMAR - July 29, 2021

Instant Visual Odometry Initialization for Mobile AR

Alejo Concha, Michael Burri, Jesus Briales, Christian Forster, Luc Oth

ICSA - November 6, 2019

Auralization systems for simulation of augmented reality experiences in virtual environments

Peter Dodds, Sebastià V. Amengual Garí, W. Owen Brimijoin, Philip W. Robinson

Journal of the Audio Engineering Society - July 20, 2021

Six-Degrees-of-Freedom Parametric Spatial Audio Based on One Monaural Room Impulse Response

Johannes M. Arend, Sebastià V. Amengual Garí, Carl Schissler, Florian Klein, Philip W. Robinson

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy