Weak-Attention Suppression For Transformer Based Speech Recognition



Transformers, originally proposed for natural language processing (NLP) tasks, have recently achieved great success in automatic speech recognition (ASR). However, adjacent acoustic units (i.e., frames) are highly correlated, and long-distance dependencies between them are weak, unlike text units. It suggests that ASR will likely benefit from sparse and localized attention. In this paper, we propose Weak-Attention Suppression (WAS), a method that dynamically induces sparsity in attention probabilities. We demonstrate that WAS leads to consistent Word Error Rate (WER) improvement over strong transformer baselines. On the widely used LibriSpeech benchmark, our proposed method reduced WER by 10% on test-clean and 5% on test-other for streamable transformers, resulting in a new state-of-the-art among streaming models. Further analysis shows that WAS learns to suppress attention of non-critical and redundant continuous acoustic frames, and is more likely to suppress past frames rather than future ones. It indicates the importance of lookahead in attention-based ASR models.

Related Publications

All Publications

Unsupervised Translation of Programming Languages

Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanussot, Guillaume Lample

NeurIPS - December 1, 2020

Learning Reasoning Strategies in End-to-End Differentiable Proving

Pasquale Minervini, Sebastian Riedel, Pontus Stenetorp, Edward Grefenstette, Tim Rocktäschel

ICML - August 13, 2020

Low-Resource Domain Adaptation for Compositional Task-Oriented Semantic Parsing

Xilun Chen, Asish Ghoshal, Yashar Mehdad, Luke Zettlemoyer, Sonal Gupta

EMNLP - October 7, 2020

Voice Separation with an Unknown Number of Multiple Speakers

Eliya Nachmani, Yossi Adi, Lior Wolf

ICML - October 1, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy