Wasserstein Generative Adversarial Networks

International Conference on Machine Learning (ICML)


We introduce a new algorithm named WGAN, an alternative to traditional GAN training. In this new model, we show that we can improve the stability of learning, get rid of problems like mode collapse, and provide meaningful learning curves useful for debugging and hyperparameter searches. Furthermore, we show that the corresponding optimization problem is sound, and provide extensive theoretical work highlighting the deep connections to different distances between distributions.

Related Publications

All Publications

NeurIPS - December 7, 2020

Labelling unlabelled videos from scratch with multi-modal self-supervision

Yuki M. Asano, Mandela Patrick, Christian Rupprecht, Andrea Vedaldi

NeurIPS - December 7, 2020

Adversarial Example Games

Avishek Joey Bose, Gauthier Gidel, Hugo Berard, Andre Cianflone, Pascal Vincent, Simon Lacoste-Julien, William L. Hamilton

NeurIPS - December 7, 2020

Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search

Linnan Wang, Rodrigo Fonseca, Yuandong Tian

NeurIPS - December 7, 2020

Joint Policy Search for Multi-agent Collaboration with Imperfect Information

Yuandong Tian, Qucheng Gong, Tina Jiang

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy