VPS Tactile Display: Tactile Information Transfer of Vibration, Pressure, and Shear

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT)


One of the challenges in the field of haptics is to provide meaningful and realistic sensations to users. While most real world tactile sensations are composed of multiple dimensions, most commercial product only include vibration as it is the most cost effective solution. To improve on this, we introduce VPS (Vibration, Pressure, Shear) display, a multi-dimensional tactile array that increases information transfer by combining Vibration, Pressure, and Shear similar to how RGB LED combines red, blue, and green to create new colors. We characterize the device performance and dynamics for each tactile dimension in terms of its force and displacement profiles, and evaluate information transfer of the VPS display through a stimulus identification task. Our results indicate that the information transfer through a single taxel increases from 0.56 bits to 2.15 bits when pressure and shear are added to vibrations with a slight decrease in identification accuracy. We also explored the pleasantness and continuity of VPS and the study results reveal that tactile strokes in shear mode alone are rated highest on perceived pleasantness and continuity.

Related Publications

All Publications

TexMesh: Reconstructing Detailed Human Texture and Geometry from RGB-D Video

Tiancheng Zhi, Christoph Lassner, Tony Tung, Carsten Stoll, Srinivasa G. Narasimhan, Minh Vo

ECCV - August 21, 2020

InterHand2.6M: A Dataset and Baseline for 3D Interacting Hand Pose Estimation from a Single RGB Image

Gyeongsik Moon, Shoou-I Yu, He Wen, Takaaki Shiratori, Kyoung Mu Lee

ECCV - August 23, 2020

DeepHandMesh: A Weakly-Supervised Deep Encoder-Decoder Framework for High-Fidelity Hand Mesh Modeling

Gyeongsik Moon, Takaaki Shiratori, Kyoung Mu Lee

ECCV - August 23, 2020

ContactPose: A Dataset of Grasps with Object Contact and Hand Pose

Samarth Brahmbhatt, Chengcheng Tang, Christopher D. Twigg, Charles C. Kemp, James Hays

ECCV - August 23, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy