VPLNet: Deep Single View Normal Estimation with Vanishing Points and Lines

Conference on Computer Vision and Pattern Recognition (CVPR)


We present a novel single-view surface normal estimation method that combines traditional line and vanishing point analysis with a deep learning approach. Starting from a color image and a Manhattan line map, we use a deep neural network to regress on a dense normal map, and a dense Manhattan label map that identifies planar regions aligned with the Manhattan directions. We fuse the normal map and label map in a fully differentiable manner to produce a refined normal map as final output. To do so, we softly decompose the output into a Manhattan part and a non-Manhattan part. The Manhattan part is treated by discrete classification and vanishing points, while the nonManhattan part is learned by direct supervision.

Our method achieves state-of-the-art results on standard single-view normal estimation benchmarks. More importantly, we show that by using vanishing points and lines, our method has better generalization ability than existing works. In addition, we demonstrate how our surface normal network can improve the performance of depth estimation networks, both quantitatively and qualitatively, in particular, in 3D reconstructions of walls and other flat surfaces.

Related Publications

All Publications

CVPR - June 19, 2021

Robust Audio-Visual Instance Discrimination

Pedro Morgado, Ishan Misra, Nuno Vasconcelos

CVPR - June 19, 2021

Audio-Visual Instance Discrimination with Cross-Modal Agreement

Pedro Morgado, Nuno Vasconcelos, Ishan Misra

The Springer Series on Challenges in Machine Learning - December 12, 2019

The Second Conversational Intelligence Challenge (ConvAI2)

Emily Dinan, Varvara Logacheva, Valentin Malykh, Alexander Miller, Kurt Shuster, Jack Urbanek, Douwe Kiela, Arthur Szlam, Iulian Serban, Ryan Lowe, Shrimai Prabhumoye, Alan W. Black, Alexander Rudnicky, Jason Williams, Joelle Pineau, Jason Weston

ACM SIGIR - July 11, 2021

From Producer Success to Retention: a New Role of Search and Recommendation Systems on Marketplaces

Viet Ha-Thuc, Matthew Wood, Yunli Liu, Jagadeesan Sundaresan

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy