Virtual Consensus in Delos

USENIX Symposium on Operating Systems Design and Implementation (OSDI)


Consensus-based replicated systems are complex, monolithic, and difficult to upgrade once deployed. As a result, deployed systems do not benefit from innovative research, and new consensus protocols rarely reach production. We propose virtualizing consensus by virtualizing the shared log API, allowing services to change consensus protocols without downtime. Virtualization splits the logic of consensus into the VirtualLog, a generic and reusable reconfiguration layer; and pluggable ordering protocols called Loglets. Loglets are simple, since they do not need to support reconfiguration or leader election; diverse, consisting of different protocols, codebases, and even deployment modes; and composable, via RAID-like stacking and striping. We describe a production database called Delos, which leverages virtual consensus for rapid, incremental development and deployment. Delos reached production within 8 months, and 4 months later upgraded its consensus protocol without downtime for a 10X latency improvement. Delos can dynamically change its performance properties by changing consensus protocols: we can scale throughput by up to 10X by switching to a disaggregated Loglet, and double the failure threshold of an instance without sacrificing throughput via a striped Loglet.

Best Paper Award at OSDI 2020

Related Publications

All Publications

MLSys - March 1, 2020

Predictive Precompute with Recurrent Neural Networks

Hanson Wang, Zehui Wang, Yuanyuan Ma

ACM SIGCOMM - October 26, 2020

Zero Downtime Release: Disruption-free Load Balancing of a Multi-Billion User Website

Usama Naseer, Luca Niccolini, Udip Pant, Alan Frindell, Ranjeeth Dasineni, Theophilus A. Benson

FL-ICML - September 1, 2020

ResiliNet: Failure-Resilient Inference in Distributed Neural Networks

Ashkan Yousefpour, Brian Q. Nguyen, Siddartha Devic, Guanhua Wang, Aboudy Kreidieh, Hans Lobel, Alexandre M. Bayen, Jason P. Jue

OSDI - November 4, 2020

The CacheLib Caching Engine: Design and Experiences at Scale

Benjamin Berg, Daniel S. Berger, Sara McAllister, Isaac Grosof, Sathya Gunasekar, Jimmy Lu, Michael Uhlar, Jim Carrig, Nathan Beckmann, Mor Harchol-Balter, Gregory G. Ganger

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy