Publication

Using Local Knowledge Graph Construction to Scale Seq2Seq Models to Multi-Document Inputs

Conference on Empirical Methods in Natural Language Processing (EMNLP)


Abstract

Query-based open-domain NLP tasks require information synthesis from long and diverse web results. Current approaches extractively select portions of web text as input to Sequence-to-Sequence models using methods such as TF-IDF ranking. We propose constructing a local graph structured knowledge base for each query, which compresses the web search information and reduces redundancy. We show that by linearizing the graph into a structured input sequence, models can encode the graph representations within a standard Sequence-to-Sequence setting. For two generative tasks with very long text input, long-form question answering and multi-document summarization, feeding graph representations as input can achieve better performance than using retrieved text portions.

Related Publications

All Publications

A Scalable Approach to Control Diverse Behaviors for Physically Simulated Characters

Jungdam Won, Deepak Gopinath, Jessica Hodgins

ACM SIGGRAPH - July 19, 2020

ARCH: Animatable Reconstruction of Clothed Humans

Zeng Huang, Yuanlu Xu, Christoph Lassner, Hao Li, Tony Tung

CVPR - June 15, 2020

In Defense of Grid Features for Visual Question Answering

Huaizu Jiang, Ishan Misra, Marcus Rohrbach, Erik Learned-Miller, Xinlei Chen

CVPR - June 14, 2020

Hierarchical Scene Coordinate Classification and Regression for Visual Localization

Xiaotian Li, Shuzhe Wang, Yi Zhao, Jakob Verbeek, Juho Kannala

CVPR - June 13, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy