Unsupervised Generation of Free-Form and Parameterized Avatars



We study two problems involving the task of mapping images between different domains. The first problem, transfers an image in one domain to an analog image in another domain. The second problem, extends the previous one by mapping an input image to a tied pair, consisting of a vector of parameters and an image that is created using a graphical engine from this vector of parameters. Similar to the first problem, the mapping’s objective is to have the output image as similar as possible to the input image. In both cases, no supervision is given during training in the form of matching inputs and outputs.

We compare the two unsupervised learning problems to the problem of unsupervised domain adaptation, define generalization bounds that are based on discrepancy, and employ a GAN to implement network solutions that correspond to these bounds. Experimentally, our methods are shown to solve the problem of automatically creating avatars.

Related Publications

All Publications

EMNLP - October 31, 2021

Evaluation Paradigms in Question Answering

Pedro Rodriguez, Jordan Boyd-Graber

ASRU - December 13, 2021

Incorporating Real-world Noisy Speech in Neural-network-based Speech Enhancement Systems

Yangyang Xia, Buye Xu, Anurag Kumar

Uncertainty and Robustness in Deep Learning Workshop at ICML - June 24, 2021

DAIR: Data Augmented Invariant Regularization

Tianjian Huang, Chinnadhurai Sankar, Pooyan Amini, Satwik Kottur, Alborz Geramifard, Meisam Razaviyayn, Ahmad Beirami

IROS - September 1, 2021

Success Weighted by Completion Time: A Dynamics-Aware Evaluation Criteria for Embodied Navigation

Naoki Yokoyama, Sehoon Ha, Dhruv Batra

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy