Publication

Unsupervised Correlation Analysis

Computer Vision and Pattern Recognition (CVPR)


Abstract

Linking between two data sources is a basic building block in numerous computer vision problems. In this paper, we set to answer a fundamental cognitive question: are prior correspondences necessary for linking between different domains?

One of the most popular methods for linking between domains is Canonical Correlation Analysis (CCA). All current CCA algorithms require correspondences between the views. We introduce a new method Unsupervised Correlation Analysis (UCA), which requires no prior correspondences between the two domains. The correlation maximization term in CCA is replaced by a combination of a reconstruction term (similar to autoencoders), full cycle loss, orthogonality and multiple domain confusion terms. Due to lack of supervision, the optimization leads to multiple alternative solutions with similar scores and we therefore introduce a consensus-based mechanism that is often able to recover the desired solution. Remarkably, this suffices in order to link remote domains such as text and images. We also present results on well accepted CCA benchmarks, showing that performance far exceeds other unsupervised baselines, and approaches supervised performance in some cases.

Related Publications

All Publications

COLING - December 8, 2020

Best Practices for Data-Efficient Modeling in NLG: How to Train Production-Ready Neural Models with Less Data

Ankit Arun, Soumya Batra, Vikas Bhardwaj, Ashwini Challa, Pinar Donmez, Peyman Heidari, Hakan Inan, Shashank Jain, Anuj Kumar, Shawn Mei, Karthik Mohan, Michael White

NeurIPS - December 1, 2020

Continuous Surface Embeddings

Natalia Neverova, David Novotny, Vasil Khalidov, Marc Szafraniec, Patrick Labatut, Andrea Vedaldi

NeurIPS - November 30, 2020

Adversarial Attacks on Linear Contextual Bandits

Evrard Garcelon, Baptiste Roziere, Laurent Meunier, Jean Tarbouriech, Olivier Teytaud, Alessandro Lazaric, Matteo Pirotta

NeurIPS - December 7, 2020

Efficient Nonmyopic Bayesian Optimization via One-Shot Multi-Step Trees

Shali Jiang, Daniel Jiang, Max Balandat, Brian Karrer, Jacob R. Gardner, Roman Garnett

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy