Publication

Unicorn: A System for Searching the Social Graph

International Conference on Very Large Data Bases (VLDB)


Abstract

Unicorn is an online, in-memory social graph-aware indexing system designed to search trillions of edges between tens of billions of users and entities on thousands of commodity servers. Unicorn is based on standard concepts in information retrieval, but it includes features to promote results with good social proximity. It also supports queries that require multiple round-trips to leaves in order to retrieve objects that are more than one edge away from source nodes.

Unicorn is designed to answer billions of queries per day at latencies in the hundreds of milliseconds, and it serves as an infrastructural building block for Facebook’s Graph Search product. In this paper, we describe the data model and query language supported by Unicorn. We also describe its evolution as it became the primary backend for Facebook’s search offerings.

Related Publications

All Publications

MLSys - May 19, 2021

TT-Rec: Tensor Train Compression For Deep Learning Recommendation Model Embeddings

Chunxing Yin, Bilge Acun, Xing Liu, Carole-Jean Wu

ICSE - May 21, 2020

Debugging Crashes using Continuous Contrast Set Mining

Rebecca Qian, Yang Yu, Wonhee Park, Vijayaraghavan Murali, Stephen Fink, Satish Chandra

Machine Learning and Programming Languages (MAPL) Workshop at PLDI - June 22, 2019

Neural Query Expansion for Code Search

Jason Liu, Seohyun Kim, Vijayaraghavan Murali, Swarat Chaudhuri, Satish Chandra

ICSE - July 22, 2020

Scaffle: Bug Localization on Millions of Files

Michael Pradel, Vijayaraghavan Murali, Rebecca Qian, Mateusz Machalica, Erik Meijer, Satish Chandra

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy