Understanding What Software Engineers Are Working On

ICPC Industry Track


Understanding what a software engineer (a developer, an incident responder, a production engineer, etc.) is working on is a challenging problem – especially when considering the more complex software engineering workflows in software-intensive organizations: i) engineers rely on a multitude (perhaps hundreds) of loosely integrated tools; ii) engineers engage in concurrent and relatively long running workflows; ii) infrastructure (such as logging) is not fully aware of work items; iv) engineering processes (e.g., for incident response) are not explicitly modeled. In this paper, we explain the corresponding ‘work-item prediction challenge’ on the grounds of representative scenarios, report on related efforts at Facebook, discuss some lessons learned, and review related work to call to arms to leverage, advance, and combine techniques from program comprehension, mining software repositories, process mining, and machine learning.

Related Publications

All Publications

Machine Learning in Compilers: Past, Present, and Future

Hugh Leather, Chris Cummins

FDL - September 14, 2020

Unsupervised Cross-Domain Singing Voice Conversion

Adam Polyak, Lior Wolf, Yossi Adi, Yaniv Taigman

Interspeech - August 8, 2020

TTS Skins: Speaker Conversion via ASR

Adam Polyak, Lior Wolf, Yaniv Taigman

Interspeech - August 9, 2020

A Simulation-based Framework for Characterizing Predictive Distributions for Deep Learning

Jessica Ai, Beliz Gokkaya, Ilknur Kaynar Kabul, Audrey Flower, Ehsan Emamjomeh-Zadeh, Hannah Li, Li Chen, Neamah Hussein, Ousmane Dia, Sevi Baltaoglu, Erik Meijer

ICML Workshop on Uncertainty and Robustness in Deep Learning - July 17, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy