Publication

Understanding Perceptions of Problematic Facebook Use

ACM Conference on Human Factors in Computing Systems (CHI)


Abstract

While many people use social network sites to connect with friends and family, some feel that their use is problematic, seriously affecting their sleep, work, or life. Pairing a survey of 20,000 Facebook users measuring perceptions of problematic use with behavioral and demographic data, we examined Facebook activities associated with problematic use as well as the kinds of people most likely to experience it. People who feel their use is problematic are more likely to be younger, male, and going through a major life event such as a breakup. They spend more time on the platform, particularly at night, and spend proportionally more time looking at profiles and less time browsing their News Feeds. They also message their friends more frequently. While they are more likely to respond to notifications, they are also more likely to deactivate their accounts, perhaps in an effort to better manage their time. Further, they are more likely to have seen content about social media or phone addiction. Notably, people reporting problematic use rate the site as more valuable to them, highlighting the complex relationship between technology use and well-being. A better understanding of problematic Facebook use can inform the design of context-appropriate and supportive tools to help people become more in control.

Related Publications

All Publications

IEEE Transactions on Haptics (ToH) - January 1, 2022

Data-driven sparse skin stimulation can convey social touch information to humans

Mike Salvato, Sophia R. Williams, Cara M. Nunez, Xin Zhu, Ali Israr, Frances Lau, Keith Klumb, Freddy Abnousi, Allison M. Okamura, Heather Culbertson

Journal of Big Data - November 6, 2021

A graphical method of cumulative differences between two subpopulations

Mark Tygert

ACM UIST - October 10, 2021

False Positives vs. False Negatives

Ben Lafreniere, Tanya R. Jonker, Stephanie Santosa, Mark Parent, Michael Glueck, Tovi Grossman, Hrvoje Benko, Daniel Wigdor

NeurIPS - December 6, 2021

Parallel Bayesian Optimization of Multiple Noisy Objectives with Expected Hypervolume Improvement

Samuel Daulton, Maximilian Balandat, Eytan Bakshy

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookie Policy