Publication

Turbine: Facebook’s Service Management Platform for Stream Processing

International Conference on Data Engineering (ICDE)


Abstract

The demand for stream processing at Facebook has grown as services increasingly rely on real-time signals to speed up decisions and actions. Emerging real-time applications require strict Service Level Objectives (SLOs) with low downtime and processing lag—even in the presence of failures and load variability. Addressing this challenge at Facebook scale led to the development of Turbine, a management platform designed to bridge the gap between the capabilities of the existing general-purpose cluster management frameworks and Facebook’s stream processing requirements. Specifically, Turbine features a fast and scalable task scheduler; an efficient predictive auto scaler; and an application update mechanism that provides fault-tolerance, atomicity, consistency, isolation and durability.

Turbine has been in production for over three years, and one of the core technologies that enabled a booming growth of stream processing at Facebook. It is currently deployed on clusters spanning tens of thousands of machines, managing several thousands of streaming pipelines processing terabytes of data per second in real time. Our production experience has validated Turbine’s effectiveness: its task scheduler evenly balances workload fluctuation across clusters; its auto scaler effectively and predictively handles unplanned load spikes; and the application update mechanism consistently and efficiently completes high scale updates within minutes. This paper describes the Turbine architecture, discusses the design choices behind it, and shares several case studies demonstrating Turbine capabilities in production.

Related Publications

All Publications

Coordinated Priority-aware Charging of Distributed Batteries in Oversubscribed Data Centers

Sulav Malla, Qingyuan Deng, Zoh Ebrahimzadeh, Joe Gasperetti, Sajal Jain, Parimala Kondety, Thiara Ortiz, Debra Vieira

MICRO - October 17, 2020

11-Gbps Broadband Modem-Agnostic Line-of-Sight MIMO Over the Range of 13 km

Yan Yan, Pratheep Bondalapati, Abhishek Tiwari, Chiyun Xia, Andy Cashion, Dawei Zhang, Tobias Tiecke, Qi Tang, Michael Reed, Dudi Shmueli, Hongyu Zhou, Bob Proctor, Joseph Stewart

IEEE GLOBECOM - January 21, 2019

Deep Learning Training in Facebook Data Centers: Design of Scale-up and Scale-out Systems

Maxim Naumov, John Kim, Dheevatsa Mudigere, Srinivas Sridharan, Xiaodong Wang, Whitney Zhao, Serhat Yilmaz, Changkyu Kim, Hector Yuen, Mustafa Ozdal, Krishnakumar Nair, Isabel Gao, Bor-Yiing Su, Jiyan Yang, Mikhail Smelyanskiy

arXiv - September 3, 2020

PyTorch Distributed: Experiences on Accelerating Data Parallel Training

Shen Li, Yanli Zhao, Rohan Verma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, Soumith Chintala

VLDB - August 31, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy