Publication

Towards Generalization Across Depth for Monocular 3D Object Detection

European Conference on Computer Vision (ECCV)


Abstract

While expensive LiDAR and stereo camera rigs have enabled the development of successful 3D object detection methods, monocular RGB-only approaches lag much behind. This work advances the state of the art by introducing MoVi-3D, a novel, single-stage deep architecture for monocular 3D object detection. MoVi-3D builds upon a novel approach which leverages geometrical information to generate, both at training and test time, virtual views where the object appearance is normalized with respect to distance. These virtually generated views facilitate the detection task as they significantly reduce the visual appearance variability associated to objects placed at different distances from the camera. As a consequence, the deep model is relieved from learning depth-specific representations and its complexity can be significantly reduced. In particular, in this work we show that, thanks to our virtual views generation process, a lightweight, single-stage architecture suffices to set new state-of-the-art results on the popular KITTI3D benchmark.

Related Publications

All Publications

Robust Market Equilibria with Uncertain Preferences

Riley Murray, Christian Kroer, Alex Peysakhovich, Parikshit Shah

AAAI - February 12, 2020

Machine Learning in Compilers: Past, Present, and Future

Hugh Leather, Chris Cummins

FDL - September 14, 2020

Unsupervised Cross-Domain Singing Voice Conversion

Adam Polyak, Lior Wolf, Yossi Adi, Yaniv Taigman

Interspeech - August 8, 2020

TTS Skins: Speaker Conversion via ASR

Adam Polyak, Lior Wolf, Yaniv Taigman

Interspeech - August 9, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy