Publication

Tight approximation for the minimum bottleneck generalized matching problem

Computing and Combinatorics Conference (Cocoon)


Abstract

We study a problem arising in statistical analysis called the minimum bottleneck generalized matching problem that involves breaking up a population into blocks in order to carry out generalizable statistical analyses of randomized experiments. At a high level the problem is to find a clustering of the population such that each part is at least a given size and has at least a given number of elements from each treatment class (so that the experiments are statistically significant), and that all elements within a block are as similar as possible (to improve the accuracy of the analysis). (Read more)

Related Publications

All Publications

Journal of Big Data - November 6, 2021

A graphical method of cumulative differences between two subpopulations

Mark Tygert

NeurIPS - December 6, 2021

Parallel Bayesian Optimization of Multiple Noisy Objectives with Expected Hypervolume Improvement

Samuel Daulton, Maximilian Balandat, Eytan Bakshy

KAIS - June 30, 2021

Fire Now, Fire Later: Alarm-Based Systems for Prescriptive Process Monitoring

Stephan A. Fahrenkrog-Petersen, Niek Tax, Irene Teinemaa, Marlon Dumas, Massimiliano de Leoni, Fabrizio Maria Maggi, Matthias Weidlich

The Quarterly Journal of Economics - October 25, 2021

Peer Effects in Product Adoption

Michael Bailey, Drew Johnston, Theresa Kuchler, Johannes Stroebel, Arlene Wong

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookie Policy