Publication

The Mystery Machine: End-to-end Performance Analysis of Large-scale Internet Services

Operating Systems Design and Implementation


Abstract

Current debugging and optimization methods scale poorly to deal with the complexity of modern Internet services, in which a single request triggers parallel execution of numerous heterogeneous software components over a distributed set of computers. The Achilles’ heel of current methods is the need for a complete and accurate model of the system under observation: producing such a model is challenging because it requires either assimilating the collective knowledge of hundreds of programmers responsible for the individual components or restricting the ways in which components interact.

Fortunately, the scale of modern Internet services offers a compensating benefit: the sheer volume of requests serviced means that, even at low sampling rates, one can gather a tremendous amount of empirical performance observations and apply “big data” techniques to analyze those observations. In this paper, we show how one can automatically construct a model of request execution from pre-existing component logs by generating a large number of potential hypotheses about program behavior and rejecting hypotheses contradicted by the empirical observations. We also show how one can validate potential performance improvements without costly implementation effort by leveraging the variation in component behavior that arises naturally over large numbers of requests to measure the impact of optimizing individual components or changing scheduling behavior.

We validate our methodology by analyzing performance traces of over 1.3 million requests to Facebook servers. We present a detailed study of the factors that affect the end-to-end latency of such requests. We also use our methodology to suggest and validate a scheduling optimization for improving Facebook request latency.

Related Publications

All Publications

POPL - January 16, 2022

Concurrent Incorrectness Separation Logic

Azalea Raad, Josh Berdine, Derek Dreyer, Peter O'Hearn

HOTI - November 1, 2021

Scalable Distributed Training of Recommendation Models: An ASTRA-SIM + NS3 case-study with TCP/IP transport

Saeed Rashidi, Pallavi Shurpali, Srinivas Sridharan, Naader Hassani, Dheevatsa Mudigere, Krishnakumar Nair, Misha Smelyanskiy, Tushar Krishna

ICSE - November 17, 2021

Automatic Testing and Improvement of Machine Translation

Zeyu Sun, Jie M. Zhang, Mark Harman, Mike Papadakis, Lu Zhang

ACM OOPSLA - October 22, 2021

VESPA: Static Profiling for Binary Optimization

Angélica Aparecida Moreira, Guilherme Ottoni, Fernando Magno Quintão Pereira

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookie Policy