Publication

The Hateful Memes Challenge: Detecting Hate Speech in Multimodal Memes

arXiv


Abstract

This work proposes a new challenge set for multimodal classification, focusing on detecting hate speech in multimodal memes. It is constructed such that unimodal models struggle and only multimodal models can succeed: difficult examples (“benign confounders”) are added to the dataset to make it hard to rely on unimodal signals. The task requires subtle reasoning, yet is straightforward to evaluate as a binary classification problem. We provide baseline performance numbers for unimodal models, as well as for multimodal models with various degrees of sophistication. We find that state-of-the-art methods perform poorly compared to humans, illustrating the difficulty of the task and highlighting the challenge that this important problem poses to the community.

Related Publications

All Publications

CoNLL - November 9, 2021

Generalising to German Plural Noun Classes, from the Perspective of a Recurrent Neural Network

Verna Dankers, Anna Langedijk, Kate McCurdy, Adina Williams, Dieuwke Hupkes

EMNLP - November 10, 2021

Cross-Policy Compliance Detection via Question Answering

Marzieh Saeidi, Majid Yazdani, Andreas Vlachos

EMNLP - October 1, 2021

Masked Language Modeling and the Distributional Hypothesis: Order Word Matters Pre-training for Little

Koustuv Sinha, Robin Jia, Dieuwke Hupkes, Joelle Pineau, Adina Williams, Douwe Kiela

EMNLP - November 7, 2021

Classification-based Quality Estimation: Small and Efficient Models for Real-world Applications

Shuo Sun, Ahmed El-Kishky, Vishrav Chaudhary, James Cross, Francisco Guzmán, Lucia Specia

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy