The Description Length of Deep Learning Models

Neural Information Processing Systems (NeurIPS)


Solomonoff’s general theory of inference (Solomonoff, 1964) and the Minimum Description Length principle (Grünwald, 2007; Rissanen, 2007) formalize Occam’s razor, and hold that a good model of data is a model that is good at losslessly compressing the data, including the cost of describing the model itself. Deep neural networks might seem to go against this principle given the large number of parameters to be encoded.

We demonstrate experimentally the ability of deep neural networks to compress the training data even when accounting for parameter encoding. The compression viewpoint originally motivated the use of variational methods in neural networks (Hinton and Van Camp, 1993; Schmidhuber, 1997). Unexpectedly, we found that these variational methods provide surprisingly poor compression bounds, despite being explicitly built to minimize such bounds. This might explain the relatively poor practical performance of variational methods in deep learning. On the other hand, simple incremental encoding methods yield excellent compression values on deep networks, vindicating Solomonoff’s approach.

Related Publications

All Publications

An Exploration of Embodied Visual Exploration

Santhosh K. Ramakrishnan, Dinesh Jayaraman, Kristen Grauman

arXiv - August 21, 2020

Audio-Visual Waypoints for Navigation

Changan Chen, Sagnik Majumder, Ziad Al-Halah, Ruohan Gao, Santhosh K. Ramakrishnan, Kristen Grauman

arXiv - August 21, 2020

Encoding Physical Constraints in Differentiable Newton-Euler Algorithm

Giovanni Sutanto, Austin S. Wang, Yixin Lin, Mustafa Mukadam, Gaurav S. Sukhatme, Akshara Rai, Franziska Meier

L4DC - June 10, 2020

Robust Market Equilibria with Uncertain Preferences

Riley Murray, Christian Kroer, Alex Peysakhovich, Parikshit Shah

AAAI - February 12, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy