Taking a HINT: Leveraging Explanations to Make Vision and Language Models More Grounded

International Conference on Computer Vision (ICCV)


Many vision and language models suffer from poor visual grounding – often falling back on easy-to-learn language priors rather than basing their decisions on visual concepts in the image. In this work, we propose a generic approach called Human Importance-aware Network Tuning (HINT) that effectively leverages human demonstrations to improve visual grounding. HINT encourages deep networks to be sensitive to the same input regions as humans. Our approach optimizes the alignment between human attention maps and gradient-based network importances – ensuring that models learn not just to look at but rather rely on visual concepts that humans found relevant for a task when making predictions. We apply HINT to Visual Question Answering and Image Captioning tasks, outperforming top approaches on splits that penalize over-reliance on language priors (VQA-CP and robust captioning) using human attention demonstrations for just 6% of the training data.

Related Publications

All Publications

SIGDIAL - August 1, 2021

Annotation Inconsistency and Entity Bias in MultiWOZ

Kun Qian, Ahmad Berrami, Zhouhan Lin, Ankita De, Alborz Geramifard, Zhou Yu, Chinnadhurai Sankar

Uncertainty and Robustness in Deep Learning Workshop at ICML - August 1, 2020

Tilted Empirical Risk Minimization

Tian Li, Ahmad Beirami, Maziar Sanjabi, Virginia Smith

arxiv - November 1, 2020

The Hateful Memes Challenge: Detecting Hate Speech in Multimodal Memes

Douwe Kiela, Hamed Firooz, Aravind Mohan, Vedanuj Goswami, Amanpreet Singh, Pratik Ringshia, Davide Testuggine

ICML - July 24, 2021

Using Bifurcations for Diversity in Differentiable Games

Jonathan Lorraine, Jack Parker-Holder, Paul Vicol, Aldo Pacchiano, Luke Metz, Tal Kachman, Jakob Foerster

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy