Publication

Taking a HINT: Leveraging Explanations to Make Vision and Language Models More Grounded

International Conference on Computer Vision (ICCV)


Abstract

Many vision and language models suffer from poor visual grounding – often falling back on easy-to-learn language priors rather than basing their decisions on visual concepts in the image. In this work, we propose a generic approach called Human Importance-aware Network Tuning (HINT) that effectively leverages human demonstrations to improve visual grounding. HINT encourages deep networks to be sensitive to the same input regions as humans. Our approach optimizes the alignment between human attention maps and gradient-based network importances – ensuring that models learn not just to look at but rather rely on visual concepts that humans found relevant for a task when making predictions. We apply HINT to Visual Question Answering and Image Captioning tasks, outperforming top approaches on splits that penalize over-reliance on language priors (VQA-CP and robust captioning) using human attention demonstrations for just 6% of the training data.

Related Publications

All Publications

Federated Learning for User Privacy and Data Confidentiality Workshop At ICML - July 24, 2021

Federated Learning with Buffered Asynchronous Aggregation

John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Michael Rabbat, Mani Malek, Dzmitry Huba

ISMAR - July 29, 2021

Instant Visual Odometry Initialization for Mobile AR

Alejo Concha, Michael Burri, Jesus Briales, Christian Forster, Luc Oth

UAI - July 28, 2021

A Nonmyopic Approach to Cost-Constrained Bayesian Optimization

Eric Hans Lee, David Eriksson, Valerio Perrone, Matthias Seeger

ACM MM - October 20, 2021

EVRNet: Efficient Video Restoration on Edge Devices

Sachin Mehta, Amit Kumar, Fitsum Reda, Varun Nasery, Vikram Mulukutla, Rakesh Ranjan, Vikas Chandra

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy