Publication

TABERT: Pretraining for Joint Understanding of Textual and Tabular Data

Annual Meeting of the Association for Computational Linguistics (ACL)


Abstract

Recent years have witnessed the burgeoning of pretrained language models (LMs) for text-based natural language (NL) understanding tasks. Such models are typically trained on free-form NL text, hence may not be suitable for tasks like semantic parsing over structured data, which require reasoning over both free-form NL questions and structured tabular data (e.g., database tables). In this paper we present TABERT, a pretrained LM that jointly learns representations for NL sentences and (semi-)structured tables. TABERT is trained on a large corpus of 26 million tables and their English contexts. In experiments, neural semantic parsers using TABERT as feature representation layers achieve new best results on the challenging weakly-supervised semantic parsing benchmark WIKITABLEQUESTIONS, while performing competitively on the text-toSQL dataset SPIDER.

Related Publications

All Publications

Electronics (MDPI) Journal - November 4, 2021

Performance Evaluation of Offline Speech Recognition on Edge Devices

Santosh Gondi, Vineel Pratap

NeurIPS - December 6, 2021

Parallel Bayesian Optimization of Multiple Noisy Objectives with Expected Hypervolume Improvement

Samuel Daulton, Maximilian Balandat, Eytan Bakshy

EMNLP Conference on Machine Translation (WMT) - October 1, 2020

BERGAMOT-LATTE Submissions for the WMT20 Quality Estimation Shared Task

Marina Fomicheva, Shuo Sun, Lisa Yankovskaya, Frédéric Blain, Vishrav Chaudhary, Mark Fishel, Francisco Guzmán, Lucia Specia

Electronics (MDPI) Journal - November 10, 2021

Performance and Efficiency Evaluation of ASR Inference on the Edge

Santosh Gondi, Vineel Pratap

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookie Policy