Publication

Spatiotemporal Haptic Effects from a Single Actuator via Spectral Control of Cutaneous Wave Propagation

IEEE World Haptics Conference


Abstract

A key challenge in haptic engineering is to design methods for stimulating the skin – a continuous medium with infinitely many degrees of freedom – via practical devices with few degrees of freedom. Here, we show how to use a single actuator to generate tactile stimuli with dynamically controlled spatial extent. The method is based on the frequency-dependent damping of propagating waves in the skin. We use full-field optical vibrometry to show that vibrations introduced at the fingertip elicit waves in the finger that propagate proximally toward the hand. We show that these waves travel distances that decrease rapidly with frequency. We demonstrate the utility of these results by designing haptic effects that produce wave fields that expand or contract in size, and that can be delivered via a single actuator. In a perception experiment, subjects accurately (median >95%) identified these stimuli as expanding or contracting without prior exposure or training. These findings demonstrate how the physics of waves in the skin can be exploited for the design of spatiotemporal tactile effects that are practical and effective.

Related Publications

All Publications

SIGGRAPH - August 9, 2021

ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation

He Zhang, Yuting Ye, Takaaki Shiratori, Taku Komura

SIGGRAPH - August 9, 2021

Control Strategies for Physically Simulated Characters Performing Two-player Competitive Sports

Jungdam Won, Deepak Gopinath, Jessica Hodgins

ICASSP - June 7, 2021

Applied Methods for Sparse Sampling of Head-related Transfer Functions

Lior Arbel, Zamir Ben-Hur, David Lou Alon, Boaz Rafaely

ICASSP - June 6, 2021

On the Predictability of HRTFs from Ear Shapes Using Deep Networks

Yaxuan Zhou, Hao Jiang, Vamsi Krishna Ithapu

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy