Publication

SoftSKU: Optimizing Server Architectures for Microservice Diversity @Scale

International Symposium on Computer Architecture (ISCA)


Abstract

The variety and complexity of microservices in warehouse-scale data centers has grown precipitously over the last few years to support a growing user base and an evolving product portfolio. Despite accelerating microservice diversity, there is a strong requirement to limit diversity in underlying server hardware to maintain hardware resource fungibility, preserve procurement economies of scale, and curb qualification/test overheads. As such, there is an urgent need for strategies that enable limited server CPU architectures (a.k.a “SKUs”) to provide performance and energy efficiency over diverse microservices. To this end, we first undertake a comprehensive characterization of the top seven microservices that run on the compute-optimized data center fleet at Facebook.

Our characterization reveals profound diversity in OS and I/O interaction, cache misses, memory bandwidth utilization, instruction mix, and CPU stall behavior. Whereas customizing a CPU SKU for each microservice might be beneficial, it is prohibitive. Instead, we argue for “soft SKUs”, wherein we exploit coarse-grain (e.g., boot time) configuration knobs to tune the platform for a particular microservice. We develop a tool, µSKU, that automates search over a soft-SKU design space using A/B testing in production and demonstrate how it can obtain statistically significant gains (up to 7.2% and 4.5% performance improvement over stock and production servers, respectively) with no additional hardware requirements.

Related Publications

All Publications

POPL - January 16, 2022

Concurrent Incorrectness Separation Logic

Azalea Raad, Josh Berdine, Derek Dreyer, Peter O'Hearn

HOTI - November 1, 2021

Scalable Distributed Training of Recommendation Models: An ASTRA-SIM + NS3 case-study with TCP/IP transport

Saeed Rashidi, Pallavi Shurpali, Srinivas Sridharan, Naader Hassani, Dheevatsa Mudigere, Krishnakumar Nair, Misha Smelyanskiy, Tushar Krishna

ICSE - November 17, 2021

Automatic Testing and Improvement of Machine Translation

Zeyu Sun, Jie M. Zhang, Mark Harman, Mike Papadakis, Lu Zhang

ACM OOPSLA - October 22, 2021

VESPA: Static Profiling for Binary Optimization

Angélica Aparecida Moreira, Guilherme Ottoni, Fernando Magno Quintão Pereira

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookie Policy