Publication

SoftSKU: Optimizing Server Architectures for Microservice Diversity @Scale

International Symposium on Computer Architecture (ISCA)


Abstract

The variety and complexity of microservices in warehouse-scale data centers has grown precipitously over the last few years to support a growing user base and an evolving product portfolio. Despite accelerating microservice diversity, there is a strong requirement to limit diversity in underlying server hardware to maintain hardware resource fungibility, preserve procurement economies of scale, and curb qualification/test overheads. As such, there is an urgent need for strategies that enable limited server CPU architectures (a.k.a “SKUs”) to provide performance and energy efficiency over diverse microservices. To this end, we first undertake a comprehensive characterization of the top seven microservices that run on the compute-optimized data center fleet at Facebook.

Our characterization reveals profound diversity in OS and I/O interaction, cache misses, memory bandwidth utilization, instruction mix, and CPU stall behavior. Whereas customizing a CPU SKU for each microservice might be beneficial, it is prohibitive. Instead, we argue for “soft SKUs”, wherein we exploit coarse-grain (e.g., boot time) configuration knobs to tune the platform for a particular microservice. We develop a tool, µSKU, that automates search over a soft-SKU design space using A/B testing in production and demonstrate how it can obtain statistically significant gains (up to 7.2% and 4.5% performance improvement over stock and production servers, respectively) with no additional hardware requirements.

Related Publications

All Publications

DELF: Safeguarding deletion correctness in Online Social Networks

Katriel Cohn-Gordon, Georgios Damaskinos, Divino Neto, Joshi Cordova, Benoît Reitz, Benjamin Strahs, Daniel Obenshain, Paul Pearce, Ioannis Papagiannis

USENIX Security - August 11, 2020

Eliminating Bugs with Dependent Haskell (Experience Report)

Noam Zilberstein

Haskell Symposium - August 27, 2020

MLPerf Inference Benchmark

Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark Charlebois, William Chou, Ramesh Chukka, Cody Coleman, Sam Davis, Pan Deng, Greg Diamos, Jared Duke, Dave Fick, J. Scott Gardner, Itay Hubara, Sachin Idgunji, Thomas B. Jablin, Jeff Jiao, Tom St. John, Pankaj Kanwar, David Lee, Jeffery Liao, Anton Lokhmotov, Francisco Massa, Peng Meng, Paulius Micikevicius, Colin Osborne, Gennady Pekhimenko, Arun Tejusve Raghunath Rajan, Dilip Sequeira, Ashish Sirasao, Fei Sun, Hanlin Tang, Michael Thomson, Frank Wei, Ephrem Wu, Lingjie Xu, Koichi Yamada, Bing Yu, George Yuan, Aaron Zhong, Peizhao Zhang, Yuchen Zhou

ISCA - May 22, 2020

RecNMP: Accelerating Personalized Recommendation with Near-Memory Processing

Liu Ke, Udit Gupta, Benjamin Youngjae Cho, David Brooks, Vikas Chandra, Utku Diril, Amin Firoozshahian, Kim Hazelwood, Bill Jia, Hsien-Hsin S. Lee, Meng Li, Bert Maher, Dheevatsa Mudigere, Maxim Naumov, Martin Schatz, Mikhail Smelyanskiy, Xiaodong Wang, Brandon Reagen, Carole-Jean Wu, Mark Hempstead, Xuan Zhang

ISCA - May 22, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy