Publication

SmoothOperator: Reducing Power Fragmentation and Improving Power Utilization in Large-scale Datacenters

ASPLOS 2018


Abstract

With the ever growing popularity of cloud computing and web services, Internet companies are in need of increased computing capacity to serve the demand. However, power has become a major limiting factor prohibiting the growth in industry: it is often the case that no more servers can be added to datacenters without surpassing the capacity of the existing power infrastructure.

In this work, we first investigate the power utilization in Facebook datacenters. We observe that the combination of provisioning for peak power usage, highly fluctuating traffic, and multi-level power delivery infrastructure leads to significant power budget fragmentation problem and inefficiently low power utilization. To address this issue, our insight is that heterogeneity of power consumption patterns among different services provides opportunities to re-shape the power profile of each power node by re-distributing services. By grouping services with asynchronous peak times under the same power node, we can reduce the peak power of each node and thus creating more power head-rooms to allow more servers hosted, achieving higher throughput. Based on this insight, we develop a workload-aware service placement framework to systematically spread the service instances with synchronous power patterns evenly under the power supply tree, greatly reducing the peak power draw at power nodes. We then leverage dynamic power profile reshaping to maximally utilize the headroom unlocked by our placement framework. Our experiments based on real production workload and power traces show that we are able to host up to 13% more machines in production, without changing the underlying power infrastructure. Utilizing the unleashed power headroom with dynamic reshaping, we achieve up to an estimated total of 15% and 11% throughput improvement for latency-critical service and batch service respectively at the same time, with up to 44% of energy slack reduction.

Related Publications

All Publications

Turbine: Facebook’s Service Management Platform for Stream Processing

Yuan Mei, Luwei Cheng, Vanish Talwar, Michael Y. Levin, Gabriela Jacques da Silva, Nikhil Simha, Anirban Banerjee, Brian Smith, Tim Williamson, Serhat Yilmaz, Weitao Duan, Guoqiang Jerry Chen

ICDE - April 21, 2020

WES: Agent-based User Interaction Simulation on Real Infrastructure

John Ahlgren, Maria Eugenia Berezin, Kinga Bojarczuk, Elena Dulskyte, Inna Dvortsova, Johann George, Natalija Gucevska, Mark Harman, Ralf Lämmel, Erik Meijer, Silvia Sapora, Justin Spahr-Summers

Genetic Improvement Workshop - April 29, 2020

Optimizing Interrupt Handling Performance for Memory Failures in Large Scale Data Centers

Harish Dattatraya Dixit, Fred Lin, Bill Holland, Matt Beadon, Zhengyu Yang, Sriram Sankar

ICPE - April 20, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy