slimIPL: Language-Model-Free Iterative Pseudo-Labeling



Recent results in end-to-end automatic speech recognition have demonstrated the efficacy of pseudo-labeling for semi-supervised models trained both with Connectionist Temporal Classification (CTC) and Sequence-to-Sequence (seq2seq) losses. Iterative Pseudo-Labeling (IPL), which continuously trains a single model using pseudo-labels iteratively re-generated as the model learns, has been shown to further improve performance in ASR. We improve upon the IPL algorithm: as the model learns, we propose to iteratively re-generate transcriptions with hard labels (the most probable tokens), that is, without a language model. We call this approach Language-Model-Free IPL (slimIPL) and give a resultant training setup for low-resource settings with CTC-based models. slimIPL features a dynamic cache for pseudo-labels which reduces sensitivity to changes in relabeling hyperparameters and results in improved training stability. slimIPL is also highly-efficient and requires 3.5-4x fewer computational resources to converge than other state-of-the-art semi/self-supervised approaches. With only 10 hours of labeled audio, slimIPL is competitive with self-supervised approaches, and is state-of-the-art with 100 hours of labeled audio without the use of a language model both at test time and during pseudo-label generation.

Related Publications

All Publications

Interspeech - August 30, 2021

A Two-stage Approach to Speech Bandwidth Extension

Ju Lin, Yun Wang, Kaustubh Kalgaonkar, Gil Keren, Didi Zhang, Christian Fuegen

SIGDIAL - July 29, 2021

Getting to Production with Few-shot Natural Language Generation Models

Peyman Heidari, Arash Einolghozati, Shashank Jain, Soumya Batra, Lee Callender, Ankit Arun, Shawn Mei, Sonal Gupta, Pinar Donmez, Vikas Bhardwaj, Anuj Kumar, Michael White

ACL - August 2, 2021

Text-Free Image-to-Speech Synthesis Using Learned Segmental Units

Wei-Ning Hsu, David Harwath, Tyler Miller, Christopher Song, James Glass

Interspeech - August 30, 2021

SUPERB: Speech Understanding and PERformance Benchmark

Shu-wen Yang, Po-Han Chi, Yung-Sung Chuang, Cheng-I Lai, Kushal Lakhotia, Yist Y. Lin, Andy T. Liu, Jiatong Shi, Xuankai Chang, Daniel Lin, Tzu-Hsien Huang, Wei-Cheng Tseng, Godic Lee, Darong Liu, Zili Huang, Annie Dong, Shang-Wen Li, Shinji Watanabe, Abdelrahman Mohamed, Hung-yi Lee

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy