Situated and Interactive Multimodal Conversations

International Conference on Computational Linguistics (COLING)


Next generation virtual assistants are envisioned to handle multimodal inputs (e.g., vision, memories of previous interactions, and the user’s utterances), and perform multimodal actions (e.g., displaying a route while generating the system’s utterance). We introduce Situated Interactive MultiModal Conversations (SIMMC) as a new direction aimed at training agents that take multimodal actions grounded in a co-evolving multimodal input context in addition to the dialog history. We provide two SIMMC datasets totalling ∼13K human-human dialogs (∼169K utterances) collected using a multimodal Wizard-of-Oz (WoZ) setup, on two shopping domains: (a) furniture – grounded in a shared virtual environment; and (b) fashion – grounded in an evolving set of images. Datasets include multimodal context of the items appearing in each scene, and contextual NLU, NLG and coreference annotations using a novel and unified framework of SIMMC conversational acts for both user and assistant utterances.

Finally, we present several tasks within SIMMC as objective evaluation protocols, such as structural API prediction, response generation, and dialog state tracking. We benchmark a collection of existing models on these SIMMC tasks as strong baselines, and demonstrate rich multimodal conversational interactions. Our data, annotations, and models are publicly available.

Related Publications

All Publications

CVPR - June 19, 2021

SimPoE: Simulated Character Control for 3D Human Pose Estimation

Ye Yuan, Shih-En Wei, Tomas Simon, Kris Kitani, Jason Saragih

CVPR - June 19, 2021

Pixel Codec Avatars

Shugao Ma, Tomas Simon, Jason Saragih, Dawei Wang, Yuecheng Li, Fernando De la Torre, Yaser Sheikh

CVPR - June 1, 2021

Semi-supervised Synthesis of High-Resolution Editable Textures for 3D Humans

Bindita Chaudhuri, Nikolaos Sarafianos, Linda Shapiro, Tony Tung

ICASSP - June 6, 2021

Multi-Channel Speech Enhancement Using Graph Neural Networks

Panagiotis Tzirakis, Anurag Kumar, Jacob Donley

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy