Publication

Single-Shot Freestyle Dance Reenactment

Conference on Computer Vision and Pattern Recognition (CVPR)


Abstract

The task of motion transfer between a source dancer and a target person is a special case of the pose transfer problem, in which the target person changes their pose in accordance with the motions of the dancer. In this work, we propose a novel method that can reanimate a single image by arbitrary video sequences, unseen during training. The method combines three networks: (i) a segmentation-mapping network, (ii) a realistic frame-rendering network, and (iii) a face refinement network. By separating this task into three stages, we are able to attain a novel sequence of realistic frames, capturing natural motion and appearance. Our method obtains significantly better visual quality than previous methods and is able to animate diverse body types and appearances, which are captured in challenging poses.

Related Publications

All Publications

CVPR - June 18, 2021

NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go

Marvin Eisenberger, David Novotny, Gael Kerchenbaum, Patrick Labatut, Natalia Neverova, Daniel Cremers, Andrea Vedaldi

CVPR - June 18, 2021

Discovering Relationships between Object Categories via Universal Canonical Maps

Natalia Neverova, Artsiom Sanakoyeu, Patrick Labatut, David Novotny, Andrea Vedaldi

CVPR - June 17, 2021

Connecting What to Say With Where to Look by Modeling Human Attention Traces

Zihang Meng, Licheng Yu, Ning Zhang, Tamara Berg, Babak Damavandi, Vikas Singh, Amy Bearman

DSN - June 21, 2021

Near-Realtime Server Reboot Monitoring and Root Cause Analysis in a Large-Scale System

Fred Lin, Bhargav Bolla, Eric Pinkham, Neil Kodner, Daniel Moore, Amol Desai, Sriram Sankar

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy