Publication

Single Image 3D Interpreter Network

European Conference on Computer Vision (ECCV)


Abstract

Understanding 3D object structure from a single image is an important but difficult task in computer vision, mostly due to the lack of 3D object annotations in real images. Previous work tackles this problem by either solving an optimization task given 2D keypoint positions, or training on synthetic data with ground truth 3D information. In this work, we propose 3D INterpreter Network (3D-INN), an end-to-end framework which sequentially estimates 2D keypoint heatmaps and 3D object structure, trained on both real 2D-annotated images and synthetic 3D data. This is made possible mainly by two technical innovations. First, we propose a Projection Layer, which projects estimated 3D structure to 2D space, so that 3D-INN can be trained to predict 3D structural parameters supervised by 2D annotations on real images. Second, heatmaps of keypoints serve as an intermediate representation connecting real and synthetic data, enabling 3D-INN to benefit from the variation and abundance of synthetic 3D objects, without suffering from the difference between the statistics of real and synthesized images due to imperfect rendering. The network achieves state-of-the-art performance on both 2D keypoint estimation and 3D structure recovery. We also show that the recovered 3D information can be used in other vision applications, such as 3D rendering and image retrieval.

Related Publications

All Publications

ISMAR - July 29, 2021

Instant Visual Odometry Initialization for Mobile AR

Alejo Concha, Michael Burri, Jesus Briales, Christian Forster, Luc Oth

ACM MM - October 20, 2021

EVRNet: Efficient Video Restoration on Edge Devices

Sachin Mehta, Amit Kumar, Fitsum Reda, Varun Nasery, Vikram Mulukutla, Rakesh Ranjan, Vikas Chandra

ICCV - October 11, 2021

Egocentric Pose Estimation from Human Vision Span

Hao Jiang, Vamsi Krishna Ithapu

CVPR - June 19, 2021

Pixel-aligned Volumetric Avatars

Amit Raj, Michael Zollhöfer, Tomas Simon, Jason Saragih, Shunsuke Saito, James Hays, Stephen Lombardi

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy