SimPoE: Simulated Character Control for 3D Human Pose Estimation

Conference on Computer Vision and Pattern Recognition (CVPR)


Accurate estimation of 3D human motion from monocular video requires modeling both kinematics (body motion without physical forces) and dynamics (motion with physical forces). To demonstrate this, we present SimPoE, a Simulation-based approach for 3D human Pose Estimation, which integrates image-based kinematic inference and physics-based dynamics modeling. SimPoE learns a policy that takes as input the current-frame pose estimate and the next image frame to control a physically-simulated character to output the next-frame pose estimate. The policy contains a learnable kinematic pose refinement unit that uses 2D key-points to iteratively refine its kinematic pose estimate of the next frame. Based on this refined kinematic pose, the policy learns to compute dynamics-based control (e.g., joint torques) of the character to advance the current-frame pose estimate to the pose estimate of the next frame. This design couples the kinematic pose refinement unit with the dynamics-based control generation unit, which are learned jointly with reinforcement learning to achieve accurate and physically-plausible pose estimation. Furthermore, we propose a meta-control mechanism which dynamically adjusts the character’s dynamics parameters based on the character state to attain more accurate pose estimates. Experiments on large-scale motion datasets demonstrate that our approach establishes new state of the art in pose accuracy while ensuring physical plausibility.

Related Publications

All Publications

CVPR - June 21, 2021

KRISP: Integrating Implicit and Symbolic Knowledge for Open-Domain Knowledge-Based VQA

Kenneth Marino, Xinlei Chen, Devi Parikh, Abhinav Gupta, Marcus Rohrbach

CVPR - June 19, 2021

Efficient Object Embedding for Spliced Image Retrieval

Bor-Chun Chen, Zuxuan Wu, Larry S. Davis, Ser-Nam Lim

CVPR - June 19, 2021

On Feature Normalization and Data Augmentation

Boyi Li, Felix Wu, Ser-Nam Lim, Serge Belongie, Kilian Q. Weinberger

CVPR - June 18, 2021

NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go

Marvin Eisenberger, David Novotny, Gael Kerchenbaum, Patrick Labatut, Natalia Neverova, Daniel Cremers, Andrea Vedaldi

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy