Simple Bag-of-Words Baseline for Visual Question Answering

ArXiv PrePrint


We describe a very simple bag-of-words baseline for visual question answering. This baseline concatenates the word features from the question and CNN features from the image to predict the answer. When evaluated on the challenging VQA dataset, it shows comparable performance to many recent approaches using recurrent neural networks. To explore the strength and weakness of the trained model, we also provide an interactive web demo and open-source code.

Related Publications

All Publications

Federated Learning for User Privacy and Data Confidentiality Workshop At ICML - July 24, 2021

Federated Learning with Buffered Asynchronous Aggregation

John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Michael Rabbat, Mani Malek, Dzmitry Huba

UAI - July 28, 2021

A Nonmyopic Approach to Cost-Constrained Bayesian Optimization

Eric Hans Lee, David Eriksson, Valerio Perrone, Matthias Seeger

Journal of Big Data - July 19, 2021

Cumulative deviation of a subpopulation from the full population

Mark Tygert

NeurIPS - July 16, 2021

Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization

Geoff Pleiss, Martin Jankowiak, David Eriksson, Anil Damle, Jacob R. Gardner

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy