Publication

SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap Using Switching ASICs

Association for Computing Machinery's Special Interest Group on Data Communications (SIGCOMM)


Abstract

In this paper, we show that up to hundreds of software load balancer (SLB) servers can be replaced by a single modern switching ASIC, potentially reducing the cost of load balancing by over two orders of magnitude. Today, large data centers typically employ hundreds or thousands of servers to load-balance incoming traffic over application servers. These software load balancers (SLBs) map packets destined to a service (with a virtual IP address, or VIP), to a pool of servers tasked with providing the service (with multiple direct IP addresses, or DIPs). An SLB is stateful, it must always map a connection to the same server, even if the pool of servers changes and/or if the load is spread differently across the pool. This property is called per-connection consistency or PCC. The challenge is that the load balancer must keep track of millions of connections simultaneously.

Until recently, it was not possible to implement a load balancer with PCC in a merchant switching ASIC, because high-performance switching ASICs typically can not maintain per-connection states with PCC. Newer switching ASICs provide resources and primitives to enable PCC at a large scale. In this paper, we explore how to use switching ASICs to build much faster load balancers than have been built before. Our system, called SilkRoad, is defined in a 400 line P4 program and when compiled to a state-of-the-art switching ASIC, we show it can load-balance ten million connections simultaneously at line rate.

Related Publications

All Publications

MLSys - March 1, 2020

Predictive Precompute with Recurrent Neural Networks

Hanson Wang, Zehui Wang, Yuanyuan Ma

ACM SIGCOMM - October 26, 2020

Zero Downtime Release: Disruption-free Load Balancing of a Multi-Billion User Website

Usama Naseer, Luca Niccolini, Udip Pant, Alan Frindell, Ranjeeth Dasineni, Theophilus A. Benson

FL-ICML - September 1, 2020

ResiliNet: Failure-Resilient Inference in Distributed Neural Networks

Ashkan Yousefpour, Brian Q. Nguyen, Siddartha Devic, Guanhua Wang, Aboudy Kreidieh, Hans Lobel, Alexandre M. Bayen, Jason P. Jue

OSDI - November 4, 2020

The CacheLib Caching Engine: Design and Experiences at Scale

Benjamin Berg, Daniel S. Berger, Sara McAllister, Isaac Grosof, Sathya Gunasekar, Jimmy Lu, Michael Uhlar, Jim Carrig, Nathan Beckmann, Mor Harchol-Balter, Gregory G. Ganger

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy