Publication

SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap Using Switching ASICs

Association for Computing Machinery's Special Interest Group on Data Communications (SIGCOMM)


Abstract

In this paper, we show that up to hundreds of software load balancer (SLB) servers can be replaced by a single modern switching ASIC, potentially reducing the cost of load balancing by over two orders of magnitude. Today, large data centers typically employ hundreds or thousands of servers to load-balance incoming traffic over application servers. These software load balancers (SLBs) map packets destined to a service (with a virtual IP address, or VIP), to a pool of servers tasked with providing the service (with multiple direct IP addresses, or DIPs). An SLB is stateful, it must always map a connection to the same server, even if the pool of servers changes and/or if the load is spread differently across the pool. This property is called per-connection consistency or PCC. The challenge is that the load balancer must keep track of millions of connections simultaneously.

Until recently, it was not possible to implement a load balancer with PCC in a merchant switching ASIC, because high-performance switching ASICs typically can not maintain per-connection states with PCC. Newer switching ASICs provide resources and primitives to enable PCC at a large scale. In this paper, we explore how to use switching ASICs to build much faster load balancers than have been built before. Our system, called SilkRoad, is defined in a 400 line P4 program and when compiled to a state-of-the-art switching ASIC, we show it can load-balance ten million connections simultaneously at line rate.

Related Publications

All Publications

MLPerf Inference Benchmark

Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark Charlebois, William Chou, Ramesh Chukka, Cody Coleman, Sam Davis, Pan Deng, Greg Diamos, Jared Duke, Dave Fick, J. Scott Gardner, Itay Hubara, Sachin Idgunji, Thomas B. Jablin, Jeff Jiao, Tom St. John, Pankaj Kanwar, David Lee, Jeffery Liao, Anton Lokhmotov, Francisco Massa, Peng Meng, Paulius Micikevicius, Colin Osborne, Gennady Pekhimenko, Arun Tejusve Raghunath Rajan, Dilip Sequeira, Ashish Sirasao, Fei Sun, Hanlin Tang, Michael Thomson, Frank Wei, Ephrem Wu, Lingjie Xu, Koichi Yamada, Bing Yu, George Yuan, Aaron Zhong, Peizhao Zhang, Yuchen Zhou

ISCA - May 22, 2020

RecNMP: Accelerating Personalized Recommendation with Near-Memory Processing

Liu Ke, Udit Gupta, Benjamin Youngjae Cho, David Brooks, Vikas Chandra, Utku Diril, Amin Firoozshahian, Kim Hazelwood, Bill Jia, Hsien-Hsin S. Lee, Meng Li, Bert Maher, Dheevatsa Mudigere, Maxim Naumov, Martin Schatz, Mikhail Smelyanskiy, Xiaodong Wang, Brandon Reagen, Carole-Jean Wu, Mark Hempstead, Xuan Zhang

ISCA - May 22, 2020

DeepRecSys: A System for Optimizing End-To-End At-Scale Neural Recommendation Inference

Udit Gupta, Samuel Hsia, Vikram Saraph, Xiaodong Wang, Brandon Reagen, Gu-Yeon Wei, Hsien-Hsin S. Lee, David Brooks, Carole-Jean Wu

ISCA - May 22, 2020

Fast Dimensional Analysis for Root Cause Investigation in a Large-Scale Service Environment

Fred Lin, Keyur Muzumdar, Nikolay Laptev, Mihai-Valentin Curelea, Seunghak Lee, Sriram Sankar

ACM SIGMETRICS - June 8, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy