Sharding the Shards: Managing Datastore Locality at Scale with Akkio

USENIX Symposium on Operating Systems Design and Implementation (OSDI)


Akkio is a locality management service layered between client applications and distributed datastore systems. It determines how and when to migrate data to reduce response times and resource usage. Akkio primarily targets multi-datacenter geo-distributed datastore systems. Its design was motivated by the observation that many of Facebook’s frequently accessed datasets have low R/W ratios that are not well served by distributed caches or full replication. Akkio’s unit of migration is called a µ-shard. Each µ-shard is designed to contain related data with some degree of access locality. At Facebook, µ-shards have become a first-class abstraction.

Akkio went into production at Facebook in 2014, and it currently manages ∼100PB of data. Measurements from our production environment show that Akkio reduces access latencies by up to 50%, cross-datacenter traffic by up to 50%, and storage footprint by up to 40% compared to reasonable alternatives. Akkio is scalable: it can support trillions of µ-shards and process many 10’s of millions of data access requests per second. And it is portable: it currently supports five datastore systems.

Related Publications

All Publications

MLPerf Inference Benchmark

Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark Charlebois, William Chou, Ramesh Chukka, Cody Coleman, Sam Davis, Pan Deng, Greg Diamos, Jared Duke, Dave Fick, J. Scott Gardner, Itay Hubara, Sachin Idgunji, Thomas B. Jablin, Jeff Jiao, Tom St. John, Pankaj Kanwar, David Lee, Jeffery Liao, Anton Lokhmotov, Francisco Massa, Peng Meng, Paulius Micikevicius, Colin Osborne, Gennady Pekhimenko, Arun Tejusve Raghunath Rajan, Dilip Sequeira, Ashish Sirasao, Fei Sun, Hanlin Tang, Michael Thomson, Frank Wei, Ephrem Wu, Lingjie Xu, Koichi Yamada, Bing Yu, George Yuan, Aaron Zhong, Peizhao Zhang, Yuchen Zhou

ISCA - May 22, 2020

RecNMP: Accelerating Personalized Recommendation with Near-Memory Processing

Liu Ke, Udit Gupta, Benjamin Youngjae Cho, David Brooks, Vikas Chandra, Utku Diril, Amin Firoozshahian, Kim Hazelwood, Bill Jia, Hsien-Hsin S. Lee, Meng Li, Bert Maher, Dheevatsa Mudigere, Maxim Naumov, Martin Schatz, Mikhail Smelyanskiy, Xiaodong Wang, Brandon Reagen, Carole-Jean Wu, Mark Hempstead, Xuan Zhang

ISCA - May 22, 2020

DeepRecSys: A System for Optimizing End-To-End At-Scale Neural Recommendation Inference

Udit Gupta, Samuel Hsia, Vikram Saraph, Xiaodong Wang, Brandon Reagen, Gu-Yeon Wei, Hsien-Hsin S. Lee, David Brooks, Carole-Jean Wu

ISCA - May 22, 2020

Fast Dimensional Analysis for Root Cause Investigation in a Large-Scale Service Environment

Fred Lin, Keyur Muzumdar, Nikolay Laptev, Mihai-Valentin Curelea, Seunghak Lee, Sriram Sankar

ACM SIGMETRICS - June 8, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy