Publication

Self-Supervised Learning by Cross-Modal Audio-Video Clustering

Conference on Neural Information Processing Systems (NeurIPS)


Abstract

Visual and audio modalities are highly correlated, yet they contain different information. Their strong correlation makes it possible to predict the semantics of one from the other with good accuracy. Their intrinsic differences make cross-modal prediction a potentially more rewarding pretext task for self-supervised learning of video and audio representations compared to within-modality learning. Based on this intuition, we propose Cross-Modal Deep Clustering (XDC), a novel self-supervised method that leverages unsupervised clustering in one modality (e.g., audio) as a supervisory signal for the other modality (e.g., video). This cross-modal supervision helps XDC utilize the semantic correlation and the differences between the two modalities. Our experiments show that XDC outperforms single-modality clustering and other multi-modal variants. XDC achieves state-of-the-art accuracy among self-supervised methods on multiple video and audio benchmarks. Most importantly, our video model pretrained on large-scale unlabeled data significantly outperforms the same model pretrained with full-supervision on ImageNet and Kinetics for action recognition on HMDB51 and UCF101. To the best of our knowledge, XDC is the first self-supervised learning method that outperforms large-scale fully-supervised pretraining for action recognition on the same architecture.

Related Publications

All Publications

Federated Learning for User Privacy and Data Confidentiality Workshop At ICML - July 24, 2021

Federated Learning with Buffered Asynchronous Aggregation

John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Michael Rabbat, Mani Malek, Dzmitry Huba

ISMAR - July 29, 2021

Instant Visual Odometry Initialization for Mobile AR

Alejo Concha, Michael Burri, Jesus Briales, Christian Forster, Luc Oth

UAI - July 28, 2021

A Nonmyopic Approach to Cost-Constrained Bayesian Optimization

Eric Hans Lee, David Eriksson, Valerio Perrone, Matthias Seeger

ACM MM - October 20, 2021

EVRNet: Efficient Video Restoration on Edge Devices

Sachin Mehta, Amit Kumar, Fitsum Reda, Varun Nasery, Vikram Mulukutla, Rakesh Ranjan, Vikas Chandra

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy