Publication

Searching for Communities: a Facebook Way

ACM SIGIR Conference on Research and Development in Information Retrieval


Abstract

Giving people the power to build community is central to Facebook’s mission. Technically, searching for communities poses very different challenges compared to the standard IR problems. First, there is a vocabulary mismatch problem since most of the content of the communities is private. Second, the common labeling strategies based on human ratings and clicks do not work well due to limited public content available to third-party raters and users at search time. Finally, community search has a dual objective of satisfying searchers and growing the number of active communities. While A/B testing is a well known approach for assessing the former, it is an open question on how to measure progress on the latter. This talk discusses these challenges in depth and describes our solution.

Related Publications

All Publications

Embedding-based Retrieval in Facebook Search

Jui-Ting Huang, Ashish Sharma, Shuying Sun, Li Xia, David Zhang, Philip Pronin, Janani Padmanabhan, Giuseppe Ottaviano, Linjun Yang

KDD - August 22, 2020

Graph Structure of Neural Networks

Jianxuan You, Jure Leskovec, Kaiming He, Saining Xie

ICML - August 14, 2020

Towards Generalization Across Depth for Monocular 3D Object Detection

Andrea Simonelli, Samuel Rota Bulò, Lorenzo Porzi, Elisa Ricci, Peter Kontschieder

ECCV - August 22, 2020

The Mapillary Traffic Sign Dataset for Detection and Classification on a Global Scale

Christian Ertler, Jerneja Mislej, Tobias Ollmann, Lorenzo Porzi, Gerhard Neuhold, Yubin Kuang

ECCV - August 23, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy